期刊文献+

带有非线性边界和扰动输入的波动方程的输出反馈控制

Output feedback control for wave equations with nonlinear boundary condition and disturbance inputs
下载PDF
导出
摘要 无穷维系统的输出反馈控制是控制理论中重要的研究课题,相对于线性边界输入而言,非线性边界条件更多应用于实际的数学模型中,容易引起各种不同的动力学行为,如混沌声振动、倍周期分岔、方波等.本文研究了左端具有非线性位移边界条件,右端带有总扰动输入的一维波动方程的输出反馈镇定问题.首先,利用算子半群理论证明了开环系统的适定性;其次,由于内部非线性项和外部扰动的存在,通过构造无穷维扰动估计器,证明了该估计器能够实时在线估计总扰动;紧接着,借助于原系统的量测输出信号设计状态观测器,构造输出反馈控制器并得到了闭环系统;最后,证明了该闭环系统的适定性和渐近稳定性. The output feedback control of infinite dimensional systems is an important research topic in control theory.Compared with linear boundary input,nonlinear boundary conditions are more applied to practical mathematical models,which can cause various dynamic behaviors,such as chaotic acoustic vibration,period-doubling bifurcation,square wave,and so on.In this paper,the output feedback stability problem of one dimensional wave equation with nonlinear displace-ment boundary condition at left end and total disturbance input at right end is studied.Firstly,the well-posedness of open loop systems is proved by using operator semigroup theory.Secondly,due to the existence of internal nonlinear terms and external disturbances,we prove that the estimator can estimate total disturbances by constructing an infinite-dimensional disturbance estimator.Then,the state observer is designed by means of the measured output signal of the original system,and the stability controller is constructed and the closed-loop system is obtained.Finally,the well-posedness and asymptotic stability of the closed-loop system are proved.
作者 张亚超 刘军军 ZHANG Ya-chao;LIU Jun-jun(College of Mathematics,Taiyuan University of Technology,Taiyuan Shanxi 030024,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第8期1459-1468,共10页 Control Theory & Applications
基金 山西省基础研究计划(自由探索类)面上项目(20210302123181)资助。
关键词 波动方程 非线性边界条件 干扰估计器 输出反馈稳定 wave equation nonlinear boundary condition disturbance estimator output feedback stabilization
  • 相关文献

参考文献3

二级参考文献40

  • 1武利强,韩京清.直线型倒立摆的自抗扰控制设计方案[J].控制理论与应用,2004,21(5):665-669. 被引量:32
  • 2朱海磊,陈基和,王赞基.利用延迟反馈进行异步电动机混沌反控制[J].中国电机工程学报,2004,24(12):156-159. 被引量:14
  • 3李洁,任海鹏.永磁同步电动机中混沌运动的部分解耦控制[J].控制理论与应用,2005,22(4):637-640. 被引量:25
  • 4朱志宇.基于反馈精确线性化的混沌系统同步控制方法[J].物理学报,2006,55(12):6248-6252. 被引量:15
  • 5PECORA L M, CANOLL T L. Synchronization in chaotic system[J]. Physical Review Letters, 1990, 64(8): 821 - 824.
  • 6CHEN S H, LU J H. Synchronization of an uncertain unified chaotic system via adaptive control[J]. Chaos, Solitions and Fractals, 2002, 14(2): 643-647.
  • 7TAN X H, ZHANG J Y, YANG Y R. Synchronizing chaotic systems using backstepping design[J]. Chaos, Solitions and Fractals, 2003, 16(1): 37 - 45.
  • 8PAR J H, KWON O M. A novel criterion for delayed feedback control of time-delay chaotic systems[J]. Chaos, Solitions and Fractals, 2005, 23(2): 495 - 501.
  • 9SHUNJI ITO, TATSUOa NARIKIYO. Abrasive machining under wet condition and constant pressure using chaotic rotation[J]. Journal of the Japan Society for Precision Engineering, 1998, 64(5): 748 - 752.
  • 10CHAU K T, YE S, GAO Y, et al. Application of chaotic-motion motors to industrial mixing processes[C]//Proceedings of the 39th IAS Annual Meeting, Conference Record of the 2004 IEEE. Seattle: IEEE, 2004, 3: 1874- 1880.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部