期刊文献+

基于贝叶斯优化ARIMA-CNN-GRU深度算法的楼宇负荷预测研究

Research on Building Load Forecasting Based on ARIMA-CNN-GRU Neural Network and Bayesian Optimization
下载PDF
导出
摘要 楼宇能耗预测问题对降低能量消耗与实现合理功能至关重要。为解决楼宇能耗复杂多变的问题,采用ARIMA模型求解能耗曲线非线性部分,再通过CNN-GRU深度学习模型拟合非线性残差,并且采用贝叶斯优化算法对深度模型进行超参优化。基于不同楼宇负荷曲线的预测结果证明,贝叶斯优化算法能够提升模型精度3倍以上,所提出的ARIMA-CNN-GRU算法针对不同类型的楼宇负荷曲线预测的最大误差控制在7%以内,比通过CNN-GRU网络直接预测楼宇负载曲线精度提升2倍,能够满足不同楼宇负荷的预测。 Building energy consumption prediction is essential for energy consumption reduction and function rationalization.To solve the complex and changeable problems of building energy consumption,ARIMA model is used to solve the nonlinear part of the energy consumption curve,then CNN-GRU depth learning model is used to fit the nonlinear residuals,and Bayesian optimization algorithm is adopted for hyperparametric optimization.The prediction results based on load curves of different buildings prove that the Bayesian optimization algorithm can improve the accuracy of the model by more than 3 times,the maximum error of ARIMA-CNN-GRU algorithm proposed for different types of building load curve prediction is controlled within 7%.The accuracy value is 2 times higher than that of building load curve direct predicted through the CNN-GRU network,meeting the prediction of different building loads.
作者 张航通 曹刚 李静雅 仲振 马俞瑞 丁书剑 ZHANG Hangtong;CAO Gang;LI Jingya;ZHONG Zhen;MA Yurui;DING Shujian(Nanjing Power Supply Branch,State Grid Jiangsu Electric Power Co.,Ltd.,Nanjing Jiangsu 210024,China;Nanjing Suyi Industry Co.,Ltd.,Nanjing Jiangsu 210008,China;Innovation Research Institute of Jiangbei New District,Southeast University,Nanjing Jiangsu 210031,China;School of Physical Science and Technology,Northwestern Polytechnical University,Xi’an Shaanxi 710072,China)
出处 《电子器件》 CAS 2024年第4期961-967,共7页 Chinese Journal of Electron Devices
关键词 智能楼宇 贝叶斯优化 自回归移动平均模型 卷积-递归神经网络 载荷预测 intelligent building Bayesian optimization ARIMA CNN-GRU load forecast
  • 相关文献

参考文献9

二级参考文献131

共引文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部