摘要
为研究竖向肋板对方柱气动力的影响,文中采用大涡模拟的方法研究均匀流场下安装竖向肋板方柱的干扰效应。在雷诺数R_(e)=2.2×10^(4)的条件下,研究不同肋板长度d,以及不同肋板距离边缘长度b的平均升阻力、脉动升阻力、流场结构和平均风压系数的变化规律,并分析肋板对方柱的影响效果。结果表明肋板长度d显著影响模型周围的气动力系数、平均流场结构和平均风压分布情况。随着肋板长度的增加,模型平均阻力系数和脉动升阻力系数显著减少。其中,与方柱相比减少最明显的是肋板长度为0.10的模型,分别减少1.50倍和8.15倍;竖向肋板使模型两侧形成小尺度旋涡,肋板夹角处形成局部旋涡。肋板距离边缘长度b对模型的影响并不显著。
This paper studies the influence of vertical ribs on the aerodynamic forces of square columns.By the method of large eddy simulation,we study the interference effect of installing vertical ribs on square columns in a uniform flow field.For different rib lengths d and rib distance edge length b,the variation patterns of average lift re⁃sistance,pulsating lift resistance,flow field structure,and average wind pressure coefficient are investigated with Reynolds number R_(e)=2.2×10^(4).The results show that the length of the floor d significantly affects the aerodynamic co⁃efficient,the average flow field structure,and the average wind pressure distribution around the model.With the in⁃crease of the length of the floor,the average drag coefficient and the pull-up drag coefficient of the model decrease significantly.As the length of the rib increases,the average drag coefficient and pulsating lift drag coefficient of the model significantly decrease.Among them,the model with a rib length of 0.10 shows the most significant decrease compared to the square column,with a reduction of 1.50 times and 8.15 times,respectively.Vertical ribs create small-scale vortices on both sides of the model,and local vortices are formed at the angles between the ribs.The in⁃fluence of the distance between the rib plate and the edge length b on the model is not significant.
作者
寇佳茵
李方慧
范佳红
张欣怡
张舒涵
吉祥
KOU Jiayin;LI Fanghui;FAN Jiahong;ZHANG Xinyi;ZHANG Shuhan;JI Xiang(School of Civil Engineering,Heilongjiang University,Harbin 150086,China)
出处
《低温建筑技术》
2024年第8期121-124,130,共5页
Low Temperature Architecture Technology
基金
国家自然基金面上项目“建筑屋面雪的热力学过程及风吹雪过程的耦合作用研究”(52078380)。
关键词
竖向肋板
大涡模拟
阻力系数
升力系数
流场结构
vertical rib plate
large eddy simulation
drag coefficient
lift coefficient
flow field structure