摘要
为进一步提高煤矿提升机异常检测能力水平,结合实际工作需求,以B/S架构搭建基于音频的煤矿提升机异常检测系统架构,并分别应用EMD-mRWR算法模型和MFEC-GCN算法模型,对音频处理和异常音频识别功能进行设计,以实现系统功能。从实验测试结果来看,该系统对于异常音频的检测准确率相对较高,因此证明本次设计的系统具有潜在应用价值。
In order to further improve the level of coal mine hoist anomaly detection ability,combined with the actual work requirements,the audio-based coal mine hoist anomaly detection system architecture is built with B/S architecture,and the EMD-mRWR algorithm model and MFEC-GCN algorithm model are applied respectively to design the audio processing and anomalous audio recognition functions to achieve the system functions.From the experimental test results,the system has a relatively high accuracy rate for the detection of abnormal audio,thus proving that the system designed in this work has potential application value.
作者
张建华
Zhang Jianhua(Shanxi Lanhua Group Dongfeng Coal Mine Co.,Ltd.,Gaoping Shanxi 048400,China)
出处
《机械管理开发》
2024年第8期235-238,共4页
Mechanical Management and Development
关键词
煤矿提升机
异常检测
音频信号
检测系统
coal mine hoist
anomaly detection
audio signal
detection system