期刊文献+

基于EAR算法的司机疲劳驾驶检测系统

Driver Fatigue Driving Detection System Based on EAR Algorithm
下载PDF
导出
摘要 为有效减少司机疲劳驾驶导致的交通事故发生率,设计了一套基于EAR算法的司机疲劳驾驶检测系统。系统由硬件和软件两部分构成。硬件部分包括STM32单片机、OLED12864液晶显示模块、DS18B20温度传感器模块、光电测速传感器模块、CN-TTS语音播报模块、ESP8266数据存储和传输模块以及K210人脸识别模块。软件部分采用EAR检测算法进行疲劳检测。通过单片机和手机上运行的APP双端监测,系统能够实时监测司机状态,在司机出现疲劳特征时发出提醒,从而有效避免疲劳驾驶带来的安全隐患。经测试,系统的综合准确率达到92.4%,能够有效提醒司机避免疲劳驾驶。 In order to effectively reduce the incidence of traffic accidents caused by drivers'fatigue driving,this paper designs a driver fatigue driving detection system based on EAR algorithm.The system consists of two parts:hardware and software.The hardware part includes STM32 microcontroller,OLED12864 LCD module,DS18B20 temperature sensor module,photoelectric speed sensor module,CN-TTS voice broadcast module,ESP8266 data storage and transmission module and K210 face recognition module.In the software part,EAR detection algorithm is used to detect fatigue.Through the dual monitoring of the single chip microcomputer and the APP running on the mobile phone,the system can monitor the status of the driver in real time,and alert driver when fatigue characteristics is present,so as to effectively avoid the safety risks brought by fatigue driving.After testing,the comprehensive accuracy rate of the system reaches 92.4%,which can effectively remind drivers to avoid fatigue driving.
作者 徐锦群 谢烨楠 周颖 顾秀秀 XU Jin-qun;XIE Ye-nan;ZHOU Ying;GU Xiu-xiu(Suqian University,Suqian 223800,China)
出处 《电脑与电信》 2024年第6期1-6,15,共7页 Computer & Telecommunication
基金 宿迁市科技计划资助项目,项目编号:K202004 宿迁学院2023年大学生创新训练项目——基于深度学习的司机疲劳驾驶自动检测系统。
关键词 EAR算法 疲劳检测 STM32单片机 EAR algorithm Fatigue detection STM32 microcontroller
  • 相关文献

参考文献4

二级参考文献18

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部