期刊文献+

基于深度学习的电视图像静帧的识别与监测技术研究

Research on Recognition and Monitoring Technology of Television Image Static Frames Based on Deep Learning
下载PDF
导出
摘要 本文提出了一种基于深度学习的电视图像静帧识别与监测方法。该方法以Pytorch深度学习框架为基础,采用swin-Transformer模型对电视图像静帧数据进行不同场景的训练、验证和测试。经过一系列的实验验证,本研究证实了深度学习技术在识别与监测电视图像静帧方面的可行性。在安全播出监管应用中,该方法的引入有望显著提升监测效率,为电视节目的安全播出提供有力保障。 This paper proposes a method for recognizing and monitoring static frames in television images based on deep learning.This method is based on the Pytorch deep learning framework and uses the Swin Transformer model to train,validate,and test TV image still frame data in different scenarios.The feasibility of using deep learning technology to identify and monitor static frames in television images is verified,which can improve monitoring efficiency and provide strong guarantees for the safe broadcasting of television programs.
作者 唐崇彦 Tang Chongyan(Guangdong Radio and Television Technology Monitoring Center,Guangdong 510066,China)
出处 《广播与电视技术》 2024年第6期122-126,共5页 Radio & TV Broadcast Engineering
关键词 深度学习 Swin-Transformer 图像识别 监测监管 Deep learning Swin-Transformer Image recognition Monitoring and supervision
  • 相关文献

参考文献2

二级参考文献7

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部