摘要
目的:运用人工神经网络确定类风湿关节炎(RA)的特征基因,并分析免疫细胞在RA相关微环境中的作用。方法:GSE1919和GSE77298芯片均来自GEO数据库。运用R语言将两芯片进行合并与批次矫正,得到一个新数据集,并进行差异分析。对差异表达基因(DEGs)进行Metascape富集分析和GO、KEGG富集分析。运用R软件“randomForest”包在随机森林(RF)算法下筛选RA特征基因,并依据基因评分构建人工神经网络模型。提取排名前4的基因(HubGene)进行后续分析。应用单样本基因集富集分析(ssGSEA)计算样品中免疫细胞丰度并进行相关性分析。结果:人工神经网络模型筛选出排名前15的基因作为RA特征基因:STAT1、RUNX3、AR、CDH11、LMO4、TIMP1、PLXNC1、CAP2、PRKAA2、VDR、SPP1、HCK、EPHB2、KCNAB1、ITGB7,其中STAT1、RUNX3、CDH11在RA滑膜组织中均上调,AR在RA滑膜组织中下调。免疫细胞浸润结果显示,RA与活化CD4 T细胞相关性最显著。与RUNX3存在显著相关性的免疫细胞最多。RUNX3与活化B细胞、活化CD4 T细胞、活化CD8 T细胞、中央记忆CD4+T细胞、效应性记忆CD8 T细胞、调节性T细胞、γδT细胞和巨噬细胞呈显著正相关,但与NK细胞呈显著负相关。结论:通过人工神经网络确定了与RA相关的15个特征基因,其中排名前4的基因为STAT1、RUNX3、AR、CDH11。强调了活化CD4 T细胞、调节性T细胞、γδT细胞、巨噬细胞、NK细胞、活化B细胞等免疫细胞在RA发病机制中的重要性,为RA诊断和免疫细胞分子机制研究提供了新见解。
Objective:To identify characteristic genes of rheumatoid arthritis(RA)by artificial neural network and to analyze role of immune cells in RA related microenvironment.Methods:GSE1919 and GSE77298 chips were from GEO database.Two chips were combined and batch corrected using R language to obtain a new data set,and difference was analyzed.Metascape enrichment analysis and GO and KEGG enrichment analysis were conducted for differential expressed genes(DEGs)."randomForest"package in R software was used to screen characteristic genes of RA under random forest(RF)algorithm,and artificial neural network model was constructed according to gene score.Top 4 genes(HubGene)were extracted for subsequent analysis.Single sample gene set enrichment analysis(ssGSEA)was used to calculate abundance of immune cells in samples and carry out a series of correlation analysis.Results:Top 15 genes were selected as characteristic genes of RA through artificial neural network model:STAT1,RUNX3,AR,CDH11,LMO4,TIMP1,PLXNC1,CAP2,PRKAA2,VDR,SPP1,HCK,EPHB2,KCNAB1,ITGB7.STAT1,RUNX3 and CDH11 were up-regulated in RA synovial tissue,while AR was down-regulated in RA synovial tissue.Immune cell infiltration results showed that RA had the most significant correlation with activated CD4 T cells.Number of immune cells significantly related to RUNX3 was the largest.RUNX3 was significant positive correlated with activated B cells,activated CD4 T cells,activated CD8 T cells,central memory CD4+T cells,effector memory CD8 T cells,regulatory T cells,γδT cells and macrophages,while significant negative correlated with NK cells.Conclusion:Fifteen characteristic genes related to RA are identified through artificial neural network,among which STAT1,RUNX3,AR and CDH11 are top 4 genes.It emphasizes activation of CD4 T cells,regulatory T cells,γδT cells,macrophages,NK cells,activated B cells and other immune cells are important in pathogenesis of RA,providing new insights for diagnosis of RA and study of molecular mechanism of immune cells.
作者
李斌华
熊伟
程凌
陆华龙
LI Binhua;XIONG Wei;CHENG Ling;LU Hualong(Nanchang Hongdu Hospital of Traditional Chinese Medicine,Nanchang 330000,China;Clinical Medicine School of Jiangxi University of Chinese Medicine,Nanchang 330004,China)
出处
《中国免疫学杂志》
CAS
CSCD
北大核心
2024年第8期1607-1614,共8页
Chinese Journal of Immunology
基金
江西省重点研发计划项目(20202BBGL73004)
南昌市科技支撑计划项目[洪科字(2022)146号]
江西省中医药中青年骨干人才(第四批)培养计划(赣中医药科教字[2022]6号)。
关键词
人工神经网络
类风湿关节炎
基因
免疫细胞
Artificial neural network
Rheumatoid arthritis
Gene
Immune cells