期刊文献+

单中心1940例前列腺癌患者临床特征及影响疾病进展的风险预测模型建立

Construction of Risk Prediction Models for Disease Progression in 1940 Prostate Cancer Patients
原文传递
导出
摘要 [目的]探讨影响前列腺癌患者疾病进展的危险因素。[方法]采用回顾性队列研究方法,分析了2000年6月至2022年9月在陆军特色医学中心诊治的前列腺癌患者1940例,共收集临床资料24项,描述其特征并分析疾病特征随时间的变化趋势,进一步将患者分为局限性及局部进展期前列腺癌组(M0)和转移性前列腺癌组(M1),分组描述其特征。在M0组以生化复发(biochemical recurrence,BCR)为终点事件,M1组以转移性去势抵抗性前列腺癌(metastatic castration resistance prostate cancer,mCRPC)为终点事件,均采用单因素、多因素Cox比例风险回归模型分析,找出M0组中出现BCR以及M1组中出现mCRPC的独立危险因素,并建立预测模型。[结果]1940例前列腺癌患者中位年龄72(66~77)岁,>70岁总占比56.45%,D-Amic预后风险高危型占80.59%,高转移负荷占比55.30%。对于局限性及局部进展期前列腺癌组,病理高Gleason评分(>7分,P=0.042)、病理高分期(≥pT3,P=0.035)、切缘阳性(P<0.001)是根治术后出现BCR的独立危险因素。建立预测模型,其AUC为0.736(95%CI:0.675~0.797,P<0.001),预测列线图的C-index为0.736(95%CI:0.678~0.793,P<0.001)。对于转移性前列腺癌组,高tPSA(>20 ng/mL,P=0.021)、穿刺高Gleason评分(>7分,P<0.001)、骨转移数目多(>3个,P=0.026)是mCRPC发生的独立危险因素。预测模型的AUC为0.652(95%CI:0.590~0.714,P<0.001),预测列线图的C-index为0.680(95%CI:0.620~0.740,P<0.001)。2个预测模型的校正曲线均表明一致性较好。[结论]病理高Gleason评分、病理高分期、切缘阳性是局限性及局部进展期前列腺癌患者根治术后发生BCR的独立危险因素。高tPSA、穿刺高Gleason评分、骨转移数目多的转移性前列腺癌进展至mCRPC的时间更短。依据上述危险因素所建立的预测模型能进行有效判断,为患者治疗方式及随访的临床决策提供参考。 [Purpose]To construct risk prediction models for disease progress of prostate cancer.[Methods]The clinical and pathological data of 1940 patients with prostate cancer treated in Army Medical Center of PLA from June 2000 to September 2022 were retrospectively analyzed.A total of 24 clinical data were collected to describe their characteristics and analyze the trend of disease characteristics over time.The patients were classified into localized or locally advanced prostate cancer group(M0 group)and metastatic prostate cancer group(M1 group).In M0 group,biochemical recurrence(BCR)was used as the endpoint event,while metastatic castration resistance prostate cancer(mCRPC)was used as the endpoint event in M1 group.Univariate and multivariate Cox proportional risk regression models were used to analyze the independent risk factors for BCR in M0 group and mCRPC in M1 group.And then risk prediction models were established and their performance was evaluated.[Results]The median age of 1940 patients was 72(66,77)years old,and 56.45%patients were aged>70 years old.In M0 group,80.59%of the patients were classified as high-risk using D-Amic prognostic risk analysis,while in M1 group 55.30%of the patients were found with high tumor load.In M0 group,high pathologic Gleason score(>7,P=0.042),high pathologic stage(≥pT3,P=0.035),and positive margins(P<0.001)were independent risk factors for BCR.A prediction model was constructed with above risk factors,the area under ROC curve(AUC)of the model in predicting BCR was 0.736(95%CI:0.675~0.797,P<0.001)and C-index was 0.736(95%CI:0.678~0.793,P<0.001).In M1 group,high tPSA(>20 ng/mL,P=0.021),high Gleason score on needle biopsy(>7,P<0.001),and more bone metastases(>3,P=0.026)were independent risk factors for mCRPC.A prediction model was constructed with above three indicators,AUC of the model in predicting mCRPC was 0.652(95%CI:0.590~0.714,P<0.001),and the C-index was 0.680(95%CI:0.620~0.740,P<0.001).The calibration curves of these 2 prediction models showed good predictive performance.[Conclusion]In localized or locally advanced prostate cancer,patients with high Gleason score,high pathologic stage,and positive margins are more likely to have BCR.In metastatic prostate cancer,patients with high tPSA,high Gleason score,and more bone metastases are more quickly to develop mCRPC.The prediction models based on the above risk factors show good predictive performance,which may provide a reference for clinical decision-making in the treatment of prostate cancer patients and during the follow-up.
作者 陈剑 陈启铭 汪泽 王亚鹏 肖海阳 金俊豪 刘秋礼 张军 张尧 王洛夫 兰卫华 江军 CHEN Jian;CHEN Qiming;WANG Ze;WANG Yapeng;XIAO Haiyang;JIN Junhao;LIU Qiuli;ZHANG Jun;ZHANG Yao;WANG Luofu;LAN Weihua;JIANG Jun(Army Medical Center of PLA,Chongqing 400010,China)
出处 《中国肿瘤》 CAS CSCD 北大核心 2024年第8期693-702,共10页 China Cancer
基金 陆军军医大学科研项目(2018XLC1014,2021XQN24)。
关键词 前列腺癌 生存分析 生化复发 去势抵抗 危险因素 预测模型 prostate cancer survival analysis biochemical recurrence castration resistance risk factors prediction model
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部