期刊文献+

Co-N共掺杂碳纳米管-多孔碳构筑及其氧还原电催化性能

Synthesis and ORR Properties of Co-N Co-Doped Carbon Nanotubes-Porous Carbons
下载PDF
导出
摘要 采用一步化学气相沉积法,以乙腈蒸气为氮源,以钴离子交换合成的沸石(CoY)为模板,制备了Co-N共掺杂碳纳米管-多孔碳氧还原催化剂(Co-N/CNT-C)。利用SEM、TEM、XRD、BET和电化学测试对催化剂组成、结构和电催化性能进行了表征。结果表明:Co-N/CNT-C-600在碱性电解质中的半波电位和极限电流密度与商业Pt/C催化剂相近,达到0.80 V和4.31 mA·cm^(-2),且循环稳定性和耐久性优于Pt/C催化剂。优异的催化性能归因于以下两点:Co-N/CNT-C-600中大量碳纳米管作为纳米级电子导体,有效加速了反应过程中的电子传递速率;被锚定在碳纳米管和多孔碳内部的催化活性位点,有效防止了连续电极反应过程中金属离子的迁移和团聚。 The ORR catalysts of Co-N co-doped carbon nanotube-porous carbon(Co-N/CNT-C)were synthesized by one-step acetonitrile vapor CVD,using acetonitrile vapor as the nitrogen source and Co ion-exchanged zeolite(CoY)as the template.The composition,structure and electrocatalytic performance of Co-N/CNT-C were characterized using SEM,TEM,XRD,BET,and electrochemical tests.The results showed that Co-N/CNT-C-600 exhibited a half-wave potential and a limiting current density in alkaline electrolyte similar to commercial Pt/C catalysts,reaching 0.80 V and 4.31 mA·cm^(-2),respectively.Moreover,it had superior cycling stability and durability compared to Pt/C catalysts.The excellent catalytic performance was attributed to two main factors:the abundant CNTs in Co-N/CNT-C-600 act as nanowires,effectively accelerating electron transfer rates during the reaction process;the catalytic active sites anchored within the CNTs and porous carbon effectively prevented the migration and aggregation of metallic species during the electrode reactions.
作者 刘文浩 陈美妤 唐哲言 赵宏伟 李莉香 安百钢 LIU Wenhao;CHEN Meiyu;TANG Zheyan;ZHAO Hongwei;LI Lixiang;AN Baigang(School of Chemical Engineering,University of Science and Technology Liaoning,Anshan Liaoning 114051,China)
出处 《当代化工》 CAS 2024年第8期1780-1785,1791,共7页 Contemporary Chemical Industry
基金 国家自然科学基金项目(项目编号:51672117、51672118) 教育部产学研合作协同育人项目(项目编号:230804429154127) 辽宁省自然科学基金项目(项目编号:2023-BS-184) 2024年辽宁省高校基本科研业务费专项资金项目(项目编号:6011000043、6011000055) 2024年辽宁省大学生创新创业训练计划项目 辽宁科技大学校人才启动基金项目(项目编号:601010396) 辽宁科技大学实验室开放基金项目(项目编号:SYSKF202407)。
关键词 分子筛 化学气相沉积 钴-氮共掺杂 纳米材料 电化学 催化剂 燃料电池 Molecular sieves Chemical vapor deposition Co-N co-doped Nanomaterials Catalyst Electrochemistry Fuel cells
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部