摘要
高清直播业务在广电行业中举足轻重,但是存在不同强度光照以及人物运动导致直播画面不清晰和亮度不自然的问题,本文提出了一种基于深度学习技术的方法,可应用于显著运动下的高动态范围图像重建。实验结果表明,该方法不仅改善了画面清晰度,还解决了亮度不均和运动模糊等问题,进一步提升了用户的直播观看体验。此外,该方法还大幅降低了模型计算成本,为智能高清直播技术的进一步推进提供了有力支持。
The high-definition live broadcasting service is crucial in the broadcasting industry.However,challenges arise due to varying intensity of lighting and the movement of subjects,leading to issues such as unclear images and unnatural brightness in live broadcasts.This paper proposes a method based on deep learning technology for reconstructing high dynamic range images under significant motion.Experimental results demonstrate that this method not only enhances image clarity but also addresses issues like uneven brightness and motion blur,thereby further improving the user's live broadcasting viewing experience.Additionally,the proposed method significantly reduces the computational cost of the model,providing robust support for the advancement of intelligent high-definition live broadcasting technology.
作者
黄天鑫
姜竹青
贾梦珍
郑栀芯
Huang Tianxin;Jiang Zhuqing;Jia Mengzhen;Zheng Zhixin(Beijing University of Posts and Telecommunications,Beijing 100866,China)
出处
《广播与电视技术》
2024年第7期30-33,共4页
Radio & TV Broadcast Engineering
基金
基金会项目(No.A14B07C02-202305D1)资助。
关键词
高动态范围图像重建
深度学习
显著运动图像
HSV颜色空间
High dynamic range(HDR)image reconstruction
Deep learning
Significant motion images
HSV color space