期刊文献+

基于改进YOLOv5算法和ResNet50网络的行人检测与识别系统

Pedestrian Detection and Recognition System Based on YOLOv5 Algorithm and ResNet50 Network
下载PDF
导出
摘要 行人检测与识别技术在交通管理、智能监控等领域具有重要的应用价值。针对现有行人检测与识别存在的检测精度低、识别困难等问题,提出了一种融合SE注意力模块的YOLOv5算法和ResNet50网络的行人检测与识别系统。在Backbone网络中引入SE注意力模块,以捕获更加丰富的特征信息,从而提升模型的检测精度;采用ResNet50网络对裁剪图片进行识别检索。实验结果表明,该算法的检测精度较高,能够识别复杂场景下的行人,基本满足不同场景下的行人检测与识别要求。 Pedestrian detection and recognition has an important application value in traffic management,intelligent monitoring and other fields.Aiming at the problems of low detection accuracy and recognition difficulty faced by the existing pedestrian detection and recognition,this study proposes a model of pedestrian detection and recognition system that integrates the YOLOv5 algorithm of attention mechanism and ResNet50 network.By introducing the SE attention mechanism into the YOLOv5 algorithm Backbone network,richer feature information is captured,thus improving the detection accuracy of the model.The pedestrian recognition system uses ResNet50 network to recognize and retrieve the detected cropped images.The experimental results show that the algorithm has high detection accuracy and can recognize pedestrians in complex scenes,basically meeting the requirements of pedestrian detection and recognition in different scenes.
作者 雷远彬 赵恩铭 刘光宇 裴燚 刘彪 张吉磊 赵洪一 陈波波 LEI Yuanbin;ZHAO Enming;LIU Guangyu;PEI Yi;LIU Biao;ZHANG Jilei;ZHAO Hongyi;CHEN Bobo(College of Engineering,Dali University,Dali Yunnan 671003,China)
出处 《重庆科技大学学报(自然科学版)》 CAS 2024年第4期83-88,共6页 Journal of Chongqing University of Science and Technology(Natural Sciences Edition)
基金 国家自然科学基金项目“基于自旋交换泵浦技术的高透过率、超窄带原子滤光器的研究”(62065001) 云南省教育厅科学研究基金项目“苍山野生动物红外图像识别与监测系统设计”(2023Y1044),“便携式人脸识别智能防疫系统设计”(2023Y1043) 云南省中青年学术和技术带头人后备人才项目“人工智能算法在光信息处理中的应用”(202205AC160001)。
关键词 目标检测 YOLOv5 图像识别 ResNet 注意力机制 object detection YOLOv5 image recognition ResNet mechanism of attention
  • 相关文献

参考文献9

二级参考文献54

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部