期刊文献+

基于风险建模的变曲率匝道自动驾驶轨迹规划方法

Trajectory Planning for Autonomous Vehicles on Ramp Scenarios with Gradual Curves Based on Risk Modeling
下载PDF
导出
摘要 变曲率匝道曲率不固定、平面布局多样,是自动驾驶面临的复杂道路场景。提出了一种考虑“车-路”耦合风险的换道算法,用以优化变曲率匝道下换道轨迹的安全性。算法以五次多项式为基础建立候选换道轨迹集,综合风险、效率和舒适性指标构建代价评估函数,实时执行代价最低的轨迹。算法在直接汇入式和平行布置式加速车道布局下进行了仿真测试,结果表明在保证效率的前提下,车辆间的冲突风险程度在加速车道直接汇入式和平行布置式两种布局下分别降低13.9%和12.6%,可以改进自动驾驶轨迹在复杂驾驶场景的安全性。 Ramp scenarios with gradual curves challenge the autonomous vehicles because of their irregular curvatures,diverse planar layouts,and multidimensional vehicle conflicts.This paper presents an algorithm based on the coupled"vehicle-road"risk to increase the safety of lane-changing on ramps with gradual curves.The quintic polynomial is adopted to construct a set of candidate lanechanging trajectories.The cost function is developed by risk,efficiency,and comfort indicators.Simulation tests under parallel continue curved and tapered continue curved ramps show that the proposed model improved safety performance by 13.9%and 12.6%under the two ramp configurations compared to earlier lane-changing algorithms based on collision detection and rule-based risk evaluation.These results showed the proposed algorithm can be applied to complicated driving scenarios to increase the trajectory safety of autonomous vehicles.
作者 柴晨 曾宪明 刘韬 CHAI Chen;ZENG Xianming;LIU Tao(Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Shanghai 201804,China;Cainiao Network,Hangzhou 311100,China)
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第8期1250-1260,共11页 Journal of Tongji University:Natural Science
基金 国家重点研发计划(2023YFC4301900) 中央高校基本科研业务费专项资金(20234YB06)。
关键词 自动驾驶 车道变换 变曲率 轨迹规划 风险场 安全优化 autonomous vehicle lane changing changing curvature trajectory planning risk field safety optimization
  • 相关文献

参考文献12

二级参考文献109

  • 1郑南宁.人工智能新时代[J].智能科学与技术学报,2019,0(1):1-3. 被引量:65
  • 2李林恒,甘婧,曲栩,冒培培,冉斌.智能网联环境下基于安全势场理论的车辆跟驰模型[J].中国公路学报,2019,32(12):76-87. 被引量:33
  • 3宗长富,杨肖,王畅,张广才.汽车转向时驾驶员驾驶意图辨识与行为预测[J].吉林大学学报(工学版),2009,39(S1):27-32. 被引量:26
  • 4Howard T M, Kelly A. Trajectory and spline generation for all-wheel steering mobile robots. Ill: Proceedings of the 2006 IEEE/RSJ International Conference oll Intelligent Robots and Systems. Beijing, China: IEEE, 2006. 4827-4832.
  • 5Kelly A, Nagy B. Reactive nonholonomic trajectory gem eration via parametric optimal control. The International Journal of Robotics Research, 2003, 22(7-8): 583-601.
  • 6Howard T M, Kelly A. Optimal rough terrain trajectory gen- eration for wheeled mobile robots. The International Journal of Robotics Research, 2007, 26(2): 141-166.
  • 7Ferguson D, Howard T M, Likhachev M. Motion planning in urban enviromnents: Part IL Intelligent robots and sys- tems. In: Proceedings of the 2008 IEEE/IRSJ International Conference on Intelligent Robots and Systems. Nice: IEEE, 2008. 1070-1076.
  • 8Howard T M. Green C ,J, Kelly A. Receding horizon model- predictive control for mobile robot navigation of intri- cate paths. Field and Service Robotics. Berlin, Heidelberg: Springer, 2010, 62:69-78.
  • 9Howard T M, Pivtoraiko M, Knepper R A, Kelly A. Model- predictiv(, motion planning: several key developments for autonomous mobile robots, IEEE Robotics and A~Jtomation hIagazine, 2014, 21(1): 64-73.
  • 10Ferguson D, Howard T M. Likhachev M. Motion planning in urban environments. Journal of Fieht Robotics, 2008, 25(11-12): 939-960.

共引文献366

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部