期刊文献+

边缘场景下基于DDQN的容器组调度策略

Container Group Scheduling Optimization Strategy Based on DDQN in Edge Scenarios
下载PDF
导出
摘要 工业互联网中存在大量部署于边缘服务器上的在/离线容器服务,这些容器服务一方面承载着低延时,高响应的需求,另一方面又具有错综复杂的调用关系。通常边缘集群的调度策略并未考虑到容器服务之间的依赖关系,这导致具有依赖关系容器服务可能在调度过程中被分散到不同的边缘节点上,并由此产生大量跨节点调用造成额外资源损耗。针对具有依赖关系的容器,该文提出面向边缘场景的容器组调度优化策略。首先通过容器聚类算法CDSC(Container Dependency Spectral Clustering)将有依赖关系的容器划分为一个或多个容器组,使得组内容器依赖强度尽可能的大,组间依赖强度尽可能的小,以减少其进行跨节点调用的频率;再通过引入双深度Q网络模型(Double DQN)将容器组作为基本调度单位,以容器依赖开销,集群和节点内部负载为优化目标,根据边缘节点实际情况自适应学习优化调度策略,使其能应对复杂多变的边缘集群情况。经实验表明,相比于传统的启发式算法和其他深度强化学习算法,该算法在容器服务响应时间、集群和节点负载方面具有明显的优势。 The industrial Internet is populated with a large number of on/offline container services deployed on edge servers.On the on hand,these container services bear the demand for low latency and high response,and on the other hand,they have intricate invocation relationships.The usual scheduling strategies for edge clusters do not take into account the dependencies between container services,leading to dependent container services possibly being dispersed across different edge nodes during scheduling,thereby generating a large number of cross-node calls and causing additional resource loss.We propose an optimization strategy for container group scheduling in edge scenarios for containers with dependencies.Firstly,the CDSC(Container Dependency Spectral Clustering)is used to divide dependent containers into one or more container groups,maximizing the dependency strength within groups and minimizing it between groups,to reduce the frequency of cross-node calls.Then,by introducing the Double Deep Q-Network model(Double DQN),the container group is used as the basic scheduling unit,with container dependency overhead,cluster and intra-node load as optimization targets.The strategy adaptively learns and optimizes scheduling strategies according to the actual situation of edge nodes,enabling it to cope with complex and changing edge cluster situations.Experimental results show that compared to traditional heuristic algorithms and deep reinforcement learning algorithms,the proposed algorithm has significant advantages in terms of container service response time,cluster and node load.
作者 王钰童 顾进广 WANG Yu-tong;GU Jin-guang(School of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan 430065,China;Hubei Provincial Key Laboratory of Intelligent Information Processing and Real-time Industrial Systems,Wuhan University of Science and Technology,Wuhan 430065,China;Research Institute of Big Data Science and Engineering,Wuhan University of Science and Technology,Wuhan 430065,China;Key Laboratory of Rich Media Digital Publishing Content Organization and Knowledge Service of the National Pressand Publication Administration,Beijing 100038,China)
出处 《计算机技术与发展》 2024年第9期16-22,共7页 Computer Technology and Development
基金 武汉市重点研发计划(2022012202015070)。
关键词 调度优化 深度强化学习 容器聚类 集群 容器依赖开销 scheduling optimization deep reinforcement learning container clustering cluster container dependency overhead
  • 相关文献

参考文献11

二级参考文献78

  • 1张明鑫,李浩.宁夏银川市市区表层土壤重金属元素数据集[J].全球变化数据学报(中英文),2018(2):198-204. 被引量:2
  • 2黄纬,温志萍,程初.云计算中基于K-均值聚类的虚拟机调度算法研究[J].南京理工大学学报,2013,37(6):807-812. 被引量:17
  • 3王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:94
  • 4WU Z, LEAHY R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentationEJ~. IEEE Trans on PAMI,1993,15(ll):1101-1113.
  • 5SHI J, MALIK J. Normalized cuts and image segmentation[-J~. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8) :888-905.
  • 6HAGEN L,KAHNG A B. New spectral methods for ratio cut par- titioning and clustering EJ~. Computer-Aided Design, 1992,11 ( 9 ) .. 1074-1085.
  • 7SARKAR S, SOUNDARARAJAN P. Supervised learning of large perceptual organization: Graph spectral partitioning and learning automataEJ~. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22 (5) : 504-525.
  • 8DING C,HE X,ZHA H,et al. Spectral min-max cut for graph par- titioning and data clusteringEC~. Proc. of the IEEE Intl Conf. on Data Mining. 2001 ~ 107-114o.
  • 9MEILA M, XU L. Multiway cuts and spectral clusteringEZ~. Uni- versity o[ Washington Technical Report, 2003 : 442-447.
  • 10DRAKE A,VENTURA D. An empirical comparison of spectral learning methods for elassification[-C3. Proceedings of the 12th In- ternational Conference on Machine Learning and Applications, IEEE,2013(1) :9-14.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部