期刊文献+

Development of a 32-gene signature using machine learning for accurate prediction of inflammatory bowel disease

原文传递
导出
摘要 Inflammatory bowel disease(IBD)is a chronic inflammatory condition caused by multiple genetic and environmental factors.Numerous genes are implicated in the etiology of IBD,but the diagnosis of IBD is challenging.Here,XGBoost,a machine learning prediction model,has been used to distinguish IBD from healthy cases following elaborative feature selection.Using combined unsupervised clustering analysis and the XGBoost feature selection method,we successfully identified a 32-gene signature that can predict IBD occurrence in new cohorts with 0.8651 accuracy.The signature shows enrichment in neutrophil extracellular trap formation and cytokine signaling in the immune system.The probability threshold of the XGBoost-based classification model can be adjusted to fit personalized lifestyle and health status.Therefore,this study reveals potential IBD-related biomarkers that facilitate an effective personalized diagnosis of IBD.
出处 《Cell Regeneration》 CAS 2023年第1期423-435,共13页 细胞再生(英文)
基金 supported by grants from Guangdong Postdoctoral Research Foundation(CN)(O0390302 to SCY) National Natural Science Foundation of China(31988101 and 31730056 to YGC).
  • 相关文献

参考文献1

二级参考文献2

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部