期刊文献+

The CsMYB123 and CsbHLH111 are involved in drought stress‑induced anthocyanin biosynthesis in Chaenomeles speciosa

原文传递
导出
摘要 Drought stress has been demonstrated to enhance the biosynthesis of anthocyanins in the leaves,resulting in an increased aesthetic appeal.However,the molecular mechanisms underlying drought-induced anthocyanin biosynthesis in Chaenomeles speciosa remain unclear.In this study,the metabolites of C.speciosa leaves were analyzed,and it was found that the content of cyanidin-3-O-rutinoside increased significantly under drought stress.The differentially expressed genes CsMYB123 and CsbHLH111 were isolated by transcriptomics data analysis and gene cloning,and gene overexpression and VIGS experiments verified that both play important roles in anthocyanin biosynthesis.Subsequently,Y1H and Dual-luciferase reporter assay showed that CsMYB123 binds to the promoters of anthocyanin biosynthesis-related structural genes(such as CsCHI,CsF3H,and CsANS),while CsbHLH111 was shown to bind to the promoter of CsCHI,positively regulating its activity.Furthermore,BIFC and Y2H assays unveiled potential protein–protein interactions between CsMYB123 and CsbHLH111 at the cell nucleus.Collectively,these results shed light on the critical roles played by CsMYB123 and CsbHLH111 in anthocyanin biosynthesis,thus providing a valuable insight into understanding the molecular mechanisms of how the MYB and bHLH genes regulate anthocyanin biosynthesis in the process of leaf coloration in C.speciosa.
出处 《Molecular Horticulture》 2023年第1期51-63,共13页 分子园艺(英文)
基金 Open access funding provided by Shanghai Jiao Tong University funded by National Natural Science Foundation of China,grant number 32171862 Plant Resources of Rosaceae in the Qinling Mountains Research on investigation,evaluation,development and utilization,grant number SXLk2020-02.
  • 相关文献

参考文献1

二级参考文献2

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部