期刊文献+

Simultaneously Constructing Asymmetrically Coordinated Cobalt Single Atoms and Cobalt Nanoclusters via a Fresh Potassium Hydroxide Clipping Strategy toward Efficient Alkaline Oxygen Reduction Reaction 被引量:1

原文传递
导出
摘要 Single-atom catalysts based on metal-N-C constituents facilitate oxygen reduction reaction kinetics due to super-high atomic utilization efficiency.However,conventional isolated atoms suffer from coordination symmetry and make less use of electron interaction between adjacent metal sites,which severely impedes its electrocatalytic activity.In response,we creatively issue a feasible potassium hydroxide clipping strategy through breaking up partial Co-N bonding and reconstructing Co-Co coordination,thus simultaneously implanting abundant Co atomic clusters and Co single atoms(SAs)on the surface of covalent organic framework(COF)-derived N-doped carbon nanospheres,which are intertwined by surrounding carbon nanotube(CNT)networks.This elaborately designed Co_(AC-SAs)/N-C@CNT catalyst combines the benefits of the asymmetrically coordinated Co-N_(2) configuration and Co-Co electronic interaction,which exert great influence on local atomic microenvironment of metal sites and,thus,efficiently modulate the electronic structure.Then,the optimized d-band center of Co centers contributes to weakening oxygen intermediate adsorption and to reducing the rate-determining step energy barrier.Meanwhile,because of the unique surface chelation mechanism between COF matrix and Co cations,the as-optimized Co centers are homogenously stabilized on the carbon outermost shell,further maximizing active sites efficiency.As expected,the CoAC-SAs/N-C@CNT catalyst harvests superior oxygen reduction reaction catalytic kinetics in alkaline medium,surpassing the commercial Pt/C catalyst.
出处 《Energy Material Advances》 EI CAS CSCD 2023年第1期363-376,共14页 能源材料前沿(英文)
基金 National Natural Science Foundation of China(grant nos.21905152,52176076,and 22005167) Youth Innovation Team Project for Talent Introduction and Cultivation in Universities of Shandong Province,the Taishan Scholar Project of Shandong Province of China(grant nos.tsqn202211160 and ts20190937) China Postdoctoral Science Foundation(grant no.2022M713249) Shandong Provincial Natural Science Foundation of China(grant nos.ZR2020QB125 and ZR2020MB045).
  • 相关文献

参考文献1

二级参考文献1

共引文献3

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部