摘要
如何寻求公平合理的分配方案(即博弈的解)是合作博弈的重要研究内容,依据博弈参与者边际贡献的分配原则和考虑参与者内在联系的社会性分配原则被广泛应用于博弈解的定义。不同的博弈组合解往往同时体现了这两类分配原则。针对现有组合解中组合参数的外生性以及缺乏合理性解释的问题,本文利用博弈解的社会可接受性,主要研究了基于Shapley值、Solidarity值、ENSC值以及均分值的两类组合解,给出了组合解中参数范围选取的充分(必要)条件,阐明了不同社会可接受性之间的关系,揭示了组合系数对博弈参与者行为的影响。
How to determine fair and reasonable allocation schemes(i.e.solutions of the game)is an important research content of cooperative games.The marginal distribution principle based on the contribution of players and the social distribution principle considering the internal connections of players are widely used in the definition of solutions.Various combination solutions usually reflect both types of these two distribution principles.In response to the problem of exogeneity and lack of reasonable explanation of combination parameters in existing combination solutions,this paper utilizes the social acceptability of solutions to mainly analyze two types of combination solutions based on Shapley value,Solidarity value,ENSC value,and equal division value.Suficient(necessary)conditions for selecting parameter range in combination solutions are given,and the relationship between different social acceptability is elucidated.Furthermore,we reveal the impact of combination coefficients on the behavior of players.
作者
孙攀飞
孙浩
SUN Panfei;SUN Hao(School of Mathematics and Statistics,Northwest-ern Polytechnical University,Xi'an 710072,Shaanxi,China;Shenzhen Research Institute of Northwestern Poly-technical University,Shenzhen 518063,Guangdong,China)
出处
《运筹学学报(中英文)》
CSCD
北大核心
2024年第3期121-131,共11页
Operations Research Transactions
基金
国家自然科学基金(Nos.72001172,72071158)
广东省基础与应用基础研究基金(No.2024A1515012244)。
关键词
合作博弈
分配原则
组合解
社会可接受性
cooperative game
distribution principle
combination solution
social acceptability