摘要
本文研究了不连续向量支付博弈α-核的存在性和稳定性,提出了向量支付博弈的联盟最小值条件和向量支付博弈的联盟C-安全性条件,从而给出了保证不连续向量支付博弈α-核存在的两类充分条件,进一步利用广义Hadmard良定性的引理,证明了一类不连续向量支付博弈α-核的良定性。
This studies the existence and stability ofα-core of games with discontinuous vector payoffs.By proposing the conditions of minimum values of games with vector payoffs and coalitional C-security,this gives two kinds of sufficient conditions to guarantee the existence ofα-core of games with discontinuous vector payoffs.Furthermore,by using the lemma for generalized Hadmard well-posedness,the well-posedness of Q-core is proven for a kind of game with discontinuous vector payoffs.
作者
宋奇庆
池欣宜
吴高宇
孙铭璐
SONG Qiqing;CHI Xinyi;WU Gaoyu;SUN Minglu(School of Mathematics and Computer Science,Shanxi Normal University,Taiyuan 030031,Shanxi,China)
出处
《运筹学学报(中英文)》
CSCD
北大核心
2024年第3期153-164,共12页
Operations Research Transactions
基金
山西省回国留学人员科研资助项目(No.2024-086)。
关键词
博弈
向量支付
连续性
α-核
复合均衡
良定性
games
vector payoffs
continuity
α-core
hybrid solutions
well-posedness