摘要
为降低燃料电池电动汽车的氢气消耗、降低燃料电池输出功率波动率及维持电池系统的荷电状态,基于工况识别能量管理策略框架提出了一种新型转移过程工况识别方法,该方法相较于传统的工况识别方法具有识别率高、识别速度快等优点。与常见的学习向量量化神经网络工况识别方法进行对比,通过仿真分别验证了所提工况识别算法的优势,同时所提基于工况识别方法的能量管理策略在混合工况下具有更优的性能表现。
To reduce hydrogen consumption in fuel cell electric vehicles,mitigate power fluctuations,and maintain the battery system′s state of charge,a novel transition process recognition method based on work condition recognition framework of energy management strategy is proposed.This method offers the advantages such as higher recognition rates and faster recognition speed comparing with the traditional condition recognition methods.A comparison is made with the commonly used LVQ recognition method,and the simulations are conducted to demonstrate the superiority of this condition recognition algorithm and the improved performance of the energy management strategy based on the present recognition method under mixed work conditions.
作者
张泽龙
皇甫宜耿
魏江
ZHANG Zelong;HUANGFU Yigeng;WEI Jiang(School of Automation,Northwestern Polytechnical University,Xi′an 710072,China;Electric Power Test Center of Shaanxi Investment,Xi′an 710061,China)
出处
《西北工业大学学报》
EI
CAS
CSCD
北大核心
2024年第4期683-688,共6页
Journal of Northwestern Polytechnical University
基金
陕西省自然科学基础研究计划企业-陕煤联合基金项目(S2021-JC-LHJJXM-LH-QY-SM-0119)
陕西省国际科技合作计划重点项目(2021KWZ-06)资助。
关键词
能量管理策略
工况识别
燃料电池电动汽车
energy management strategy
work condition recognition
fuel cell electric vehicle