期刊文献+

Determination of Elastoplastic Properties of 2024 Aluminum Alloy Using Deep Learning and Instrumented Nanoindentation Experiment 被引量:1

原文传递
导出
摘要 The instrumented nanoindentation technique has been widely used to measure the tensile properties of various materials,for its simple specimen preparation and nearly nondestructive testing processes.In this paper,a novel inverse method is established for measuring the elastoplastic properties of Al 2024 alloy.The grid indentation experiments are performed on Al 2024 material.The obtained experimental load–displacement(P–h)data exhibit obvious scatter characteristics.The artificial neural network(ANN)model with tunable hyper-parameters is adopted to establish the forward relationship between elastoplastic parameters and indentation load–displacement snapshot.An objective function for quantifying the error norm between predicted and experimental P–h snapshots is established.The parameter identification problem is solved using the“interior-point”constraint optimization algorithm..The identified material properties show good agreement with the tensile data,and the error values are−8.66%for elastic modulus,1.08%for yield stress,and 6.90%for hardening exponent.The sensitivity of numerical results to experimental uncertainty is analyzed,and the error bound of experimental data is determined.The results of sensitivity analysis indicate that the proposed inverse method in the work is very effective and reliable.
出处 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2023年第2期327-339,共13页 固体力学学报(英文版)
基金 supported by the National Natural Science Foundation of China(No.52005378) the Opening project fund of Materials Service Safety Assessment Facilities(No.MSAF-2021-107) the Fundamental Research Funds for the Central Universities(ZYTS23018).
  • 相关文献

参考文献5

二级参考文献15

共引文献27

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部