期刊文献+

Influence of tree species on soil microbial residue accumulation and distribution among soil aggregates in subtropical plantations of China 被引量:2

原文传递
导出
摘要 Background Microbial residues are significant contributors to stable soil organic carbon(SOC).Soil aggregates effectively protect microbial residues against decomposition;thus,microbial residue accumulation and distribution among soil aggregates determine long-term SOC stability.However,how tree species influence accumulation and distribution of soil microbial residues remains largely unknown,hindering the chances to develop policies for SOC management.Here,we investigated microbial residue accumulation and distribution in soil aggregates under four subtropical tree species(Cunninghamia lanceolata,Pinus massoniana,Michelia macclurei,and Schima superba)after 29 years of afforestation.Results Accumulation of microbial residues in the 0-10 cm soil layer was 13.8-26.7%higher under S.superba than that under the other tree species.A structural equation model revealed that tree species affected the accumulation of microbial residues directly by altering fungal biomass.Additionally,tree species significantly affected microbial residue distribution and contribution to SOC in the top 20 cm soil.In particular,microbial residue distribution was 17.2-33.4%lower in large macro-aggregates(LMA)but 60.1-140.7%higher in micro-aggregates(MA)under S.superba than that under the other species in the 0-10 cm soil layer,and 14.3-19.0%lower in LMA but 43-52.1%higher in MA under S.superba than that under C.lanceolata and M.macclurei in the 10-20 cm soil layer.Moreover,the contribution of microbial residues to SOC was 44.4-47.5%higher under S.superba than under the other tree species.These findings suggest a higher stability of microbial residues under S.superba than that under the other studied tree species.Conclusions Our results demonstrate that tree species influence long-term microbial persistence in forest soils by affecting accumulation and stabilization of microbial residues.
出处 《Ecological Processes》 SCIE EI CSCD 2023年第1期450-460,共11页 生态过程(英文)
基金 supported by the National Natural Science Foundation of China(31830015,32171752 and 31901302) the Natural Science Foundation of Sichuan Province(2023NSFSC0755) the Open Fund of Ecological Security and Protection Key Laboratory of Sichuan Province,Mianyang Normal University(ESP1701).
  • 相关文献

参考文献8

二级参考文献140

共引文献186

同被引文献29

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部