期刊文献+

Variational Structure and Uniqueness of Generalized Kähler-Ricci Solitons

原文传递
导出
摘要 Under broad hypotheses we derive a scalar reduction of the generalized Kähler-Ricci soliton system.We realize solutions as critical points of a functional,analogous to the classical Aubin energy,defined on an orbit of the natural Hamiltonian action of diffeomorphisms,thought of as a generalized Kähler class.This functional is convex on a large set of paths in this space,and using this we show rigidity of solitons in their generalized Kähler class.As an application we prove uniqueness of the generalized Kähler-Ricci solitons on Hopf surfaces constructed in Streets and Ustinovskiy[Commun.Pure Appl.Math.74(9),1896-1914(2020)],finishing the classification in complex dimension 2.
出处 《Peking Mathematical Journal》 CSCD 2023年第2期307-351,共45页 北京数学杂志(英文)
基金 V.A.was supported in part by an NSERC Discovery Grant and a Connect Talent Grant of the Région Pays de la Loire.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部