期刊文献+

Novel High-Order Mass-and Energy-Conservative Runge-Kutta Integrators for the Regularized Logarithmic Schrodinger Equation

原文传递
导出
摘要 We develop a class of conservative integrators for the regularized logarithmic Schrodinger equation(RLogSE)using the quadratization technique and symplectic Runge-Kutta schemes.To preserve the highly nonlinear energy functional,the regularized equation is first transformed into an equivalent system that admits two quadratic invariants by adopting the invariant energy quadratization approach.The reformulation is then discretized using the Fourier pseudo-spectral method in the space direction,and integrated in the time direction by a class of diagonally implicit Runge-Kutta schemes that conserve both quadratic invariants to round-off errors.For comparison purposes,a class of multi-symplectic integrators are developed for RLogSE to conserve the multi-symplectic conservation law and global mass conservation law in the discrete level.Numerical experiments illustrate the convergence,efficiency,and conservative properties of the proposed methods.
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2023年第4期993-1012,共20页 高等学校计算数学学报(英文版)
基金 supported by the National Natural Science Foundation of China(12271523,11901577,11971481,12071481) the National Key R&D Program of China(SQ2020YFA0709803) the Defense Science Foundation of China(2021-JCJQ-JJ-0538) the National Key Project(GJXM92579) the Natural Science Foundation of Hunan(2020JJ5652,2021JJ20053) the Research Fund of National University of Defense Technology(ZK19-37,ZZKY-JJ-21-01) the Science and Technology Innovation Program of Hunan Province(2021RC3082) the Research Fund of College of Science,National University of Defense Technology(2023-lxy-fhjj-002).
  • 相关文献

参考文献1

二级参考文献22

  • 1S. Shakravarty, M.J. Ablowitz, J.R. Sauer, and R.B. Lai, Opt. Lett. 20 (1995) 136.
  • 2A.K. Dhar and K.P. Dhas, Phys. Fluids A 3 (1991) 3021.
  • 3M.S. El Naschie, Int. J. Nonlinear Sci. Numer. Simul. 8 (2007) 1.
  • 4K.W. Chow and D.W.C. Lai, Phys. Rev. E 68 (2003) 017601.
  • 5S.V. Manakov, Soy. Phys. JEPT 38 (1974) 248.
  • 6V.E. Zakharov and E.I. Schulman, Physica D 4 (1982) 270.
  • 7S.C. Tsang and K.W. Chow, Math. Comput. Simul. 66 (2004) 551.
  • 8P. Liu and S. Lou, Commun. Theor. Phys. 51 (2009) 27.
  • 9Y. Chen, H. Zhu, and S. Song, Commun. Theor. Phys. 56 (2011) 617.
  • 10J. Cai and Y. Wang, Chin. Phys. B 22 (2013) 060207.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部