期刊文献+

Effect of Preload Force on Heat Generation of Li(Ni_(0.8)Co_(0.1)Mn_(0.1))O_(2)/SiO_(x)-C System Batteries:The Discharge Process

原文传递
导出
摘要 Lithium-ion batteries(LIBs)undergo various degradation phenomena such as material decomposition,structural change and uneven lithium ion distribution during long-term cycles,which would affect their performance and safety.In order to improve the performance of the LIBs during their life cycle,preload force is preset when the batteries are assembled.Different preload forces will in turn affect the cycle life and heat generation of the battery.In order to address this issue,this work carries out charge/discharge cycle tests on a NCM811 battery under different preload forces.Isothermal calorimetry tests are performed to investigate the battery heat generation under different states of health(SOHs)and preload forces.Based on the test results,an empirical prediction model for heat generation power as a function of SOH is established.Results show that when the preload force is 5 N·m,the battery capacity decreases in the slowest rate and the average heat generation power is the lowest.Changes in peaks of the incremental capacity curve can be used to characterize the loss of lithium at the electrode,which in turn characterizes the change of heat generation power of the battery.The average heat generation power is mainly affected by the SOH,going through a period of trough with the decrease of the SOH and continuing to increase after crossing the critical point.In general,these findings emphasize the relationship between preload force,SOH and heat generation power,which is helpful for the judgment of optimal preload to improve the efficiency of LIBs.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第5期1809-1825,共17页 热科学学报(英文版)
基金 the financial supports from the National Key R&D Plan of China(No.2021YFB2402001) the Chongqing Municipal Innovation Project(No.CYS23657)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部