摘要
The special electronic characteristics and high atom usage efficiency of metal-nitrogen-carbon(M-N-C)materials have made them extremely attractive for oxygen reduction reactions(ORRs).However,it is inevitable that hydrogen peroxide(H_(2)O_(2))will be formed via the two-electron pathway in ORRs.Herein,the Cu nanoparticles(NPs)have been encapsulated into Ni doped hollow mesoporous carbon spheres(Ni-HMCS)to reduce the generation of H_(2)O_(2)in ORR.Electrochemical tests confirm that the introduction of Cu NPs improves the ORR performance greatly.The obtained Cu/Ni-HMCS exhibits a half-wave potential of 0.82 V vs.reversible hydrogen electrode and a limited current density of 5.5 mA cm^(-2),which is comparable with the commercial Pt/C.Moreover,Cu/Ni-HMCS has been used in Zn-air battery,demonstrating a high power density of 161 mW cm^(-2)and a long-term recharge capability(50 h at 5 mA cm^(-2)).The theoretical calculation proposes a tandem catalysis pathway for Cu/Ni multi-sites catalysis,that is,H_(2)O_(2)released from the Ni-N_(4)and Cu-N_(4)sites migrates to the Cu(111)face,on which the captive H_(2)O_(2)is further reduced to H_(2)O.This work demonstrates an interesting tandem catalytic pathway of dual-metal multi-sites for ORR,which provides an insight into the development of effective fuel cell electrocatalysts.
金属-氮-碳(M-N-C)材料的特殊电子性质和较高的原子利用率,在氧还原反应(ORR)中得到广泛研究.然而,在氧还原过程中,形成过氧化氢(H_(2)O_(2))的双电子途径是无法避免的.本文设计通过将Cu纳米粒子(NPs)引入到中空介孔碳球(HMCS)中来降低M-N-C材料的双电子选择性,增强其ORR性能.电化学测试证实了Cu NPs对ORR性能的改善.相对于可逆氢电极,Cu/Ni HMCS具有0.82 V的半波电位和5.5 mA cm^(-2)的极限电流密度,与商业Pt/C相当.此外,将Cu/Ni-HMCS应用在锌-空气电池中,表现出161 mW cm^(-2)的高功率密度和长期充放电稳定性(在5 mA cm^(-2)条件下持续50小时).理论计算提出了Cu/Ni多位点催化串联催化途径,即O_(2)在Ni-N_(4)和Cu-N_(4)位点还原生成的H_(2)O_(2)迁移到Cu(111)晶面,在Cu(111)面进一步还原为H_(2)O.本研究展示了ORR双金属多位点串联催化途径,为燃料电池电催化剂的设计提供了新思路.
作者
Bin-Bin Feng
Ke-Ke Chang
Wan-Feng Xiong
Duan-Hui Si
Shui-Ying Gao
Hong-Fang Li
Rong Cao
冯彬彬;常可可;熊晚枫;司端惠;高水英;李红芳;曹荣(College of Chemistry and Materials Science,Fujian Normal University,Fuzhou,350007,China;State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou,350002,China;Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China,Fuzhou,350108,China;University of Chinese Academy of Sciences,Beijing,100049,China)
基金
supported by the National Key Research and Development Program of China(2021YFA1501500 and 2018YFA0704502)
the National Natural Science Foundation of China(22171265,22201286,22033008 and 22220102005)
Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ103)
the Open Research Fund of CNMGE Platform&NSCC-TJ
the Open Science Promotion Plan 2023 of CSTCloud。