摘要
在考虑舍入误差影响的情况下,研究一维平流方程迎风格式最优时空步长的选取.首先,分析每一时间层产生的离散误差和舍入误差,以及2种误差向高时间层传播的累积,得到数值解总误差的理论上界;然后推导出最优时间步长和最优空间步长的理论公式,进而得到2种不同机器精度下最优时间步长之比满足的一个仅与机器精度有关的普适关系;最后通过数值算例验证了结论的可靠性.
The optimal steps in space and time are studied in numerical solution of one-dimensional advection equation with upwind difference scheme when round off error is taken into account.Firstly,discretization error and round off errors in the nu-merical computation are analyzed theoretically,as well as the accumulation of the two kinds of errors propagating from each lower time layer to the highest time layer.The theoretical approximate formula for total error bound is derived.Then the theoreti-cal formulae for determining optimal steps in space and time are obtained,and a universal relation between two optimal time steps under any two different machine precision is established,which only relates to the two involved machine precision.Final-ly,the reliability of the conclusion are confirmed by numerical examples.
作者
张洪伟
曹靖
李建平
ZHANG Hongwei;CAO Jing;LI Jianping(School of Mathematical Sciences,Tianjin Normal University,Tianjin 300387,China;College of Science,Tianjin University of Tech-nology,Tianjin 300384,China;Frontiers Science Center for Deep Ocean Multispheres and Earth System(DOMES),Ocean University of China,Qingdao 266100,Shandong Province,China;Laoshan Laboratory,Qingdao 266237,Shandong Province,China)
出处
《天津师范大学学报(自然科学版)》
CAS
北大核心
2024年第4期14-18,共5页
Journal of Tianjin Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(41905092)。
关键词
平流方程
迎风格式
离散误差
舍入误差
最优步长
advection equation
upwind difference scheme
discretization error
round off error
optimal step