期刊文献+

基于Falcon的盲签名方案

A New Blind Signature Scheme Based on Falcon
下载PDF
导出
摘要 基于格的密码体系是后量子密码时代的重要研究方向,构造格上的盲签名方案具有重要意义.本文结合NIST后量子密码标准化项目的优胜算法Falcon,设计了一个NTRU格上紧凑型的盲签名方案.消息盲化时,用户先将签名者产生的320 bit均匀分布的随机比特串和一个本地均匀生成的等长随机比特串进行异或运算,得到真实签名组合中的320 bit长的随机值,实现该部分签名的盲性.接着用户计算原始消息拼接上新生成的随机向量的哈希值,然后将一个任意选取的整数和两个离散高斯分布随机选择的向量作为盲因子对哈希值进行盲化,实现消息对签名者的盲性.将原始消息与上述生成的均匀随机比特串做拼接的操作可以使得一个消息拥有多个合法签名.在“先哈希再签名”范式下,签名者利用快速傅里叶陷门采样器从NTRU格上寻找离其陪集上一点最近的格点,计算出符合要求的盲签名.用户对盲签名去盲后可以得到消息的合法签名.在随机谕言机模型下,基于NTRU格上SIS问题的困难性假设,证明本文方案满足强不可伪造性.依据效率分析,本文方案产生的公钥和签名组合尺寸较小,可以有效节约带宽资源. Lattice based cryptosystem is a mainstream research direction in post quantum cryptography.Therefore,it is of great significance to construct blind signature schemes on lattices.Based on the theory of blind signature and NTRU lattice,and combining the winning algorithm Falcon of the NIST post quantum cryptography standardization project,this paper designs a compact blind signature scheme.During the process of message blinding,the user performs a bitwise XOR operation on a random binary string with a size of 320 bits generated by the signer and a locally uniformly generated random string of equal length to obtain a 320-bit random binary string in a real signature combination,thereby achieving the blindness of this part of the signature.Splicing the original message with the uniformly generated random string described above can get a message with multiple legitimate signatures.Under the“Hash-then-Sign”paradigm,the signer uses the fast Fourier trapdoor sampler to find a closest lattice point to a point on its coset on an NTRU lattice.After that,the blind signature that meets the requirements can be calculated.The user can obtain a legal signature of the message by performing an unblind operation on the blind signature.Based on the hardness assumption of the SIS problem on NTRU lattice,it is proved that the proposed scheme satisfies strong unforgeability in a random oracle model.The efficiency analysis shows that,both the size of the public key and that of signature combination generated by this scheme are small,which can effectively save bandwidth resources.
作者 李子臣 郑惠敏 LI Zi-Chen;ZHENG Hui-Min(Digital Rights Management Research Center,Beijing Institute of Graphic Communication,Beijing 102600,China)
出处 《密码学报(中英文)》 CSCD 北大核心 2024年第4期911-923,共13页 Journal of Cryptologic Research
基金 国家自然科学基金(61370188) 北京市教育委员会科学研究计划(KM202010015009,KM202110015004,KM202310015002) 北京印刷学院博士启动金(27170120003/020) 北京印刷学院科研创新团队项目(Eb202101) 北京印刷学院校内学科建设项目(21090121021) 北京印刷学院重点教改项目(22150121033/009) 北京印刷学院科研基础研究一般项目(Ec202201) 北京市高等教育学会2022年立项面上课题(MS2022093)。
关键词 FALCON 盲签名 强不可伪造性 Falcon blind signature strong unforgeability
  • 相关文献

参考文献5

二级参考文献31

  • 1Chaum D. Blind Signatures for Untraceable Payments[C]. Crypto 1982, California,1983.
  • 2Camenisch J,Koprowski M, Warinschi B. Effcient Blind Signatures Without Random Oracles[C]. Security in Communicalion Networks, Amalfi, Italy, 2004.
  • 3Okamoto T. Efficient Blind and Partially Blind Signatures Without Random Oracles[C]. Theory of Cryptography Conference (TCC) 2006, LNCS 3876, New York,2006.
  • 4Bresson E, Monnerat J, Vergnaud D. Separation Results on the One More Computational Problems [C]. RSA Conference (CT-RSA) 2008, San Francisco, CA,2008.
  • 5Shor P W. Polynomial time Algorithm for Prime Factorizeation and Discrete Logarithm on a Quan rum Computer [J]. SIAM Journal on Computing, 1997, 26(5):1 484 -1 509.
  • 6Lyubashevsky V, Micciancio D. Asymptotically Efficient Lattice Based Digital Signature[C].TCC2008, LNCS 4948, New York,2008.
  • 7Regev O. On Lattice, I.earning with Errors, Random Linear Codes, and Cryptography[C].STOC'05, Baltimore, 2005.
  • 8Gentry C, Peikert C, Vaikuntanathan V . Trapdoors for Hard Lattices and New Cryptographic Constructions[C]. STOC2008, Victoria, British Columbia, 2008.
  • 9Atwen J, Peikert C. Generating Shorter Bases for Hard Random Lattices[C].STACS, Freiburg, 2009.
  • 10Ruckert M. Lattice-based Blind Signatures[OL]. http ://eprint. iaer. org. 2008/322,2008.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部