摘要
针对参数不确定性和网络时滞效应引起的轨迹跟踪控制性能衰退问题,提出了基于状态误差快速收敛的输出反馈鲁棒模型预测控制策略.根据汽车参数的不确定性来源和网络信号的随机时延特性,构建了包含两类不确定项的多胞体控制模型,并通过鲁棒状态观测器实现对状态变量的精确观测,结合采用快速收敛约束设计的鲁棒模型预测控制器,有效提高了车辆的轨迹跟踪精度和横摆稳定性.测试结果表明,提出的策略可以有效消除两类不确定性对跟踪控制的影响;相对于传统的线性模型预测控制和鲁棒模型预测控制方法,其轨迹跟踪精度分别提高了83.70%和19.41%,横摆稳定性分别提高了72.88%和40.74%,实车试验表明其具备良好的实时性和可行性.
To solve the degradation problems existing in vehicle trajectory tracking control due to the parameter uncertainty and network delay,a predictive control strategy was proposed for output feedback robust model based on fast convergence of state error.Firstly,considering the uncertainty sources of vehicle parameters and the random delay characteristics of network signals,a multi-center control model was constructed with the incorporation of two type uncertain terms.Then,a robust observer was taken to observe the state variables accurately,and a predictive controller with fast constraints was designed effectively for the robust model to improve trajectory tracking accuracy and yaw stability of the vehicles.The test results show that the proposed strategy can effectively eliminate the impact of two type uncertainties on tracking control.Compared with the traditional linear model predictive control and robust model predictive control methods,the trajectory tracking accuracy of the new proposed robust model can be improved by 83.70%and 19.41%respectively,and Yaw stability can be improved by 72.88%and 40.74%respectively.The actual vehicle tests show that the proposed strategy can provide a better real-time performance and feasibility.
作者
赵文强
魏洪乾
艾强
林晨
尹志华
郑楠
王洪荣
张幽彤
ZHAO Wenqiang;WEI Hongqian;AI Qiang;LIN Chen;YIN Zhihua;ZHENG Nan;WANG Hongrong;ZHANG Youtong(Key Laboratory of Low Emission Vehicles in Beijing,Beijing Institute of Technology,Beijing 100081,China;Vehicle Measurement,Control and Safety Key Laboratory of Sichuan Province,Chengdu,Sichuang 610039,China;Faculty of Engineering,Monash University,Melbourne VIC3800,Australia;China Automotive Engineering Research Institute Co.,Ltd.,Chongqing 401122,China)
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2024年第9期923-936,共14页
Transactions of Beijing Institute of Technology
基金
国家重点研发计划项目(2021YFB3101500)
国家自然科学基金资助项目(52202461)
中国博士后自然科学基金资助项目(2022TQ0032,2022M710380)
汽车新技术安徽省工程技术研究中心开放基金资助项目(QCKJ202202A)
汽车测控与安全四川省重点实验室开放基金(QCCK2023-001)
国家留学基金委项目(202206030099)。
关键词
智能驾驶汽车
轨迹跟踪
时滞动力学
参数不确定性
autonomous vehicles
trajectory tracking
time-delay dynamics
parameter uncertainty