期刊文献+

全域哈希椭圆曲线签名

Full domain Hash ellipticc curve signature
原文传递
导出
摘要 椭圆曲线密码体制(elliptic curve cryptosystem,ECC)依然是当前应用最广泛的公钥密码体制,其安全核心是椭圆曲线离散对数问题.本文提出了椭圆曲线离散对数的强不动点问题.利用强不动点假设,在随机预言模型下证明了ECDSA(elliptic curvedigital signature algorithm)的一个全域哈希变形方案是可以抵抗自适应选择消息下的存在伪造的签名的聚合性质使得签名方案在诸如区块链、云存储等众多场景中发挥着重要作用,所以本文也讨论了这个全域哈希椭圆曲线签名方案的聚合性质. The elliptic curve cryptosystem(ECC)remains the most widely used public key cryptosystem.The elliptic curve discrete logarithm problem is its security kernel.We propose a strong fixed point problem of elliptic curve discrete logarithm.Using the strong fixed point assumption,we prove that a full domain hash variant of ECDSA(elliptic curve digital signature algorithm)is secure against existential forgery under the adaptive chosen message attack under the random oracle model.The aggregation properties of signatures make signature schemes play important roles in many scenarios,such as blockchain and cloud storage;therefore,we also discussed the aggregatability of signatures of this variant of ECDSA.
作者 张方国 Fangguo ZHANG(School of Computer Science and Engineering,Sun Yat-sen University,Guangzhou 510006,China;Guangdong Province Key Laboratory of Information Security Technology,Guangzhou 510006,China)
出处 《中国科学:信息科学》 CSCD 北大核心 2024年第8期1860-1870,共11页 Scientia Sinica(Informationis)
基金 国家重点研发计划(批准号:2022YFB2701500) 国家自然科学基金(批准号:62272491) 广东省信息安全技术重点实验室(批准号:2023B1212060026)资助项目。
关键词 椭圆曲线 数字签名 不动点 加和多项式 聚合签名 elliptic curve digital signature fixed point summation polynomial aggregate signature
  • 相关文献

参考文献2

二级参考文献3

  • 1C. P. Schnorr. Efficient signature generation by smart cards[J] 1991,Journal of Cryptology(3):161~174
  • 2Arne Winterhof.Some Estimates for Character Sums and Applications[J].Designs Codes and Cryptography.2001(2)
  • 3Neal Koblitz.Elliptic curve cryptosystems[J].Mathematics of Computation.1987(177)

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部