摘要
Recent advancements in quantum photonic circuits have significantly influenced the field of quantum information processing.The pursuit of an integrated quantum photonic circuit that offers an active,stable platform for large-scale integration and high processing efficiency remains a key objective.The grating coupler,as a crucial element for an efficient transformation output interface in the integrated quantum photonic circuits,presents significant potential for practical applications.Here,we demonstrate the integration block of a highly efficient shallow-etched focusing apodized grating coupler with indium arsenide(InAs)quantum dots(QDs)in gallium arsenide(GaAs)on a SiO2substrate for active quantum photonic circuits.The designed grating couplers possess a high efficiency over 90% in the broadband(900-930 nm)from the circuit to free space,and a nearly-perfect match with the fiber mode.Experimentally,the efficiency to free space reaches 81.8%,and the match degree with the fiber mode is high up to 92.1%.The proposed integration block offers the potential for large-scale integration of active quantum photonic circuits due to its stable solid substrate and highly performant output for quantum measurements.
基金
supported by the National Key R&D Program of China(Grant No.2021YFA1400800)
the National Natural Science Foundation of China(Grant No.12334017)
the Key-Area Research and Development Program of Guangdong Province(Grant No.2018B030329001)。