期刊文献+

Sparse convolutional model with semantic expression for waste electrical appliances recognition

原文传递
导出
摘要 Deep neural networks play an important role in the recognition of waste electrical appliances. However, deep neural network components still lack reliability in decision-making features. To address this problem, a sparse convolutional model with semantic expression(SCMSE) is proposed. First, a low-rank sparse semantic expression component, combining the benefits of residual networks and sparse representation, is adapted to enhance sparse feature extraction and semantic expression. Second, a reliable network architecture is obtained by iterating the optimal sparse solution, enhancing semantic expression. Finally, the results of visualization experiments on the waste electrical appliances dataset demonstrate that the proposed SCMSE can obtain excellent semantic performance.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第9期2881-2893,共13页 中国科学(技术科学英文版)
基金 supported by the National Key Research and Development Project(Grant No.2022YFB3305800-5) the National Natural Science Foundation of China(Grant Nos.61903010, 62125301, 62021003, and 61890930-5) the Beijing Outstanding Young Scientist Program(Grant No.BJJWZYJH01201910005020) the Beijing Natural Science Foundation(Grant No.KZ202110005009) the Beijing Youth Scholar(Grant No.037)。
  • 相关文献

参考文献3

二级参考文献3

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部