摘要
【目的】从技术融合角度出发,综合采用链路预测、指标评价方法识别企业技术机会,为企业进行战略性研发布局提供参考。【方法】基于目标企业专利数据构建知识元素共现网络,采用链路预测方法识别潜在知识组合,从企业内部技术禀赋、外部创新环境两个角度创建多维指标,评价潜在知识组合的可行性,进而构建潜在知识组合分布图,识别企业技术机会。【结果】采用6种机器学习算法构建链路预测模型,准确率最高达到0.810。不仅为目标企业精准识别到10项技术机会,更呈现了技术描述与功能模块的对应关系。【局限】仅关注以IPC对形式呈现的知识组合,对于多个IPC形式的知识组合有待进一步探索。【结论】结合链路预测方法与多维指标评价方法,能够更精准、细粒度地识别企业技术机会。
[Objective]Starting from the technology integration perspective,this paper uses link prediction and indicator evaluation methods to identify technological opportunities for enterprises,providing references for strategic research and development.[Methods]Based on the patent data of the target enterprise,we constructed a co-occurrence network of knowledge elements.We also used the link prediction method to identify potential knowledge combinations.From the perspectives of internal technology endowment and external innovation environment,we created a multi-dimensional index to evaluate the feasibility of potential knowledge combinations.Finally,we created a distribution map of potential knowledge combinations to identify technological opportunities for enterprises.[Results]We constructed the link prediction model using six machine learning algorithms,with the highest accuracy reaching 0.810.We accurately identified ten technological opportunities for the target enterprise and presented the corresponding relationship between the technology description and functional modules.[Limitations]This study only included knowledge combinations presented in the form of IPC pairs.Further exploration is needed for knowledge combinations in multiple IPC forms.[Conclusions]Combining the link prediction methods and multi-dimensional indicator evaluation methods can more accurately identify technological opportunities for enterprises.
作者
张彪
陈云伟
董坤
Zhang Biao;Chen Yunwei;Dong Kun(National Science Library(Chengdu),Chinese Academy of Sciences,Chengdu 610299,China;Department of Information Resources Management,School of Economics and Management,University of Chinese Academy of Sciences,Beijing 100190,China;School of Information Management,Shandong University of Technology,Zibo 255000,China)
出处
《数据分析与知识发现》
EI
CSCD
北大核心
2024年第7期137-148,共12页
Data Analysis and Knowledge Discovery
基金
四川省科技计划项目(项目编号:2022JDR0360)的研究成果之一。
关键词
企业技术机会
链路预测
内部技术禀赋
外部创新环境
Enterprise Technology Opportunities
Link Prediction
Internal Technology Endowment
External Innovation Environment