期刊文献+

基于点阵离焦估计的三维成像方法

Three-Dimensional Imaging Using Point Matrix Projection-Based Defocus Estimation
原文传递
导出
摘要 传统基于调制度测量的三维成像方法需要同步控制正弦条纹的移动和焦距的变化,该方法拍摄数量较多、结构和控制较为复杂。在调制度测量轮廓术基础上提出一种基于点阵离焦估计的三维成像方法。所提方法投影逐步变焦的点阵图样,通过被测表面亮度序列的改变提取调制信息,并建立调制序列最大位置与深度的对应关系,从而提取三维信息。详细分析其理论过程,并搭建相应实验平台进行验证。实验结果表明,所提方法能较为准确地恢复物体高度,相比传统方法,结构更简单,控制更方便。 Traditional threedimensional(3D)imaging based on modulation degree measurement must control sinusoidalfringe movements and synchronous focallength changes,having a large number of shots and complex structure and control.This research proposes 3D imaging involving point matrix projectionbased defocus estimation on the basis of modulation degree measurement profilometry.A point matrix with gradually changing focal length is projected onto the involved objects,and the brightness sequence of the measured surface is recorded to extract modulation information.The involved 3D information can be evaluated based on the correspondence between the maximum position and depth of the modulation sequence.This study involved analyzing the mentioned theoretical process in detail;a corresponding experimental platform was set up to verify it.The experimental results show that the proposed method can be used to accurately recover the target height.Further,compared with the traditional method,this method is structurally simpler and more convenient to control.
作者 陈豪 李宏宁 赵海 高雅孺 杨鑫 Chen Hao;Li Hongning;Zhao Hai;Gao Yaru;Yang Xin(School of Physics and Electronic Information,Yunnan Normal University,Kunming 650500,Yunnan,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2024年第14期90-100,共11页 Laser & Optoelectronics Progress
关键词 点阵投影 离焦 三维测量 光学测量 调制度 point matrix projection out of focus threedimensional measurement optical measurement modulation degree
  • 相关文献

参考文献2

二级参考文献35

  • 1阮秋琦.数字图像处理学[M].北京:电子工业出版社,2007.
  • 2Malacara Z, Servin M. Intefferogram Analysis for Optical Testing[M]. USA: CRC press, 2005.
  • 3Chen L C, Yeh S L, Tapilouw A M, et al.. 3-D surface profilometry using simultaneous phase-shifting interferometry[J]. Opt Commun, 2010, 283(18): 3376-3382.
  • 4Debnath S K, Park Y K. Real-time quantitative phase imaging with a spatial phase-shifting algorithm[J]. Opt Lett, 2011, 36(23): 4677-4679.
  • 5Li J, Li J, Shen L, et al.. Optical image encryption and hiding based on a modified Mach-Zehnder interferometer[J]. Opt Express, 2014, 22(4): 4849-4860.
  • 6Hariharan P, Oreb B, Eiju T. Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm[J]. Appl Opt, 1987, 26(13): 2504-2506.
  • 7Stoilov G, Dragostinov T. Phase-stepping interferometry: five-frame algorithm with an arbitrary step[J]. Opt & Laser in Eng, 1997, 28 (1): 61-69.
  • 8Yamaguchi I, Zhang T. Phase-shifting digital holography[J].Opt Lett, 1997, 22(16): 1268-1270.
  • 9Van Wingerden J, Frankena H J, Smorenburg C. Linear approximation for measurement errors in phase shifting interferometry[J]. Appl Opt, 1991, 30(19): 2718-2729.
  • 10Gutmann B, Weber H. Phase-shifter calibration and error detection in phase-shifting applications: a new method [J]. Appl Opt, 1998, 37(32): 7624-7631.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部