期刊文献+

结合自适应关键帧策略与运动信息的特征匹配方法

Feature Matching Method Combining Adaptive Keyframe Strategy with Motion Information
原文传递
导出
摘要 针对视觉惯性导航系统在高动态场景下由于快速运动、成像模糊等导致特征匹配精度低的问题,提出一种结合自适应关键帧策略与运动信息的特征匹配方法。首先,基于时间、惯性运动、成像清晰度及视差4项因子构建关键帧的更新判据,提出一种自适应关键帧策略,以提升关键帧的选取质量。其次,根据惯性运动信息,通过对图像进行几何变换实现相邻关键帧图像之间的共视区域匹配,旨在增强共视区域特征的可检测性。然后,采用改进的Oriented FAST and Rotated BRIEF(ORB)特征方法进行特征点的提取与匹配,以提高视觉特征点的匹配精度。最后,在公开数据集EuRoC上对所提方法进行测试。实验结果表明,所提特征匹配方法具有较好的精度与鲁棒性,在光照变化、成像模糊等动态场景具有较好的实用价值。 This paper proposes a feature matching method that combines an adaptive keyframe strategy with motion information to address the problem that the feature matching accuracy of the visual inertial navigation system decreases due to blurred imaging and maneuvering in dynamic environments.First,we propose an adaptive keyframe strategy to improve the quality of keyframe selection by establishing an updating criterion for keyframes based on four indicators:time,inertial motion,imaging clarity,and parallax.Second,the common viewing region among adjacent keyframes is identified through geometric transformation of the image based on inertial motion to enhance feature detectability.Next,an improved Oriented FAST and Rotated BRIEF(ORB)feature method based on the Gaussian image pyramid is used to improve the matching accuracy of feature points.Finally,the performance of the proposed method is verified using EuRoC public datasets.The results show that the proposed method has better accuracy and robustness in applications with dynamic scenes,such as illumination changes and image blur.
作者 吴林滨 曹云峰 马宁 Wu Linbin;Cao Yunfeng;Ma Ning(College of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,Jiangsu,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2024年第14期398-408,共11页 Laser & Optoelectronics Progress
基金 南京航空航天大学研究生科研与实践创新计划(xcxjh20221503)。
关键词 机器视觉 视觉惯性导航系统 动态场景 特征提取与匹配 传感器融合 machine vision visual inertial navigation system dynamic environment feature extraction and matching sensor fusion
  • 相关文献

参考文献9

二级参考文献41

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部