摘要
针对基于相位解调的前向受激布里渊散射(F-SBS)传感系统的空间分辨率进行了理论分析,并通过数值仿真验证了原始数据信噪比不足会导致系统空间分辨率明显恶化。为克服信噪比不足的影响,提出利用注意力引导的卷积去噪神经网络(ADNet)算法进行数据后处理运算,使读取脉冲零阶边带的信噪比由47.05 dB提高到了64.23 dB,系统的空间分辨率由15 m恢复到理论值3 m。此方法在不增加系统测量装置复杂度的前提下有效改善了空间分辨率,有助于促进相位解调F-SBS传感器的实用化。
This study discusses the spatial resolution of a forward stimulated Brillouin scattering(FSBS)sensing system based on phase demodulation.A theoretical analysis of this resolution is conducted,and numerical simulations confirm that inadequate signaltonoise ratios in the original data lead to a noticeable degradation of the system’s spatial resolution.To mitigate the impact of an insufficient signaltonoise ratio,this study proposes the utilization of an attentionguided denoising convolutional neural network algorithm for data postprocessing.The signaltonoise ratio of the zeroorder sideband of the reading pulse increases from 47.05 dB to 64.23 dB when this algorithm is applied.As a result,the system’s spatial resolution is restored from 15 m to its theoretical value of 3 m.This approach effectively enhances the spatial resolution without introducing additional complexity to the measurement apparatus,thereby contributing to the practical implementation of phasedemodulated FSBS sensors.
作者
帅文兰
张建忠
马喆
刘铭
孙博文
金柯志
张明江
Shuai Wenlan;Zhang Jianzhong;Ma Zhe;Liu Ming;Sun Bowen;Jin Kezhi;Zhang Mingjiang(Key Laboratory of Advanced Transducers and Intelligent Control System,Ministry of Education and Shanxi Province,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China;College of Electronic Information and Optical Engineering,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China;College of Physics,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China;ShanxiZheda Institute of Advanced Materials and Chemical Engineering,Taiyuan 030024,Shanxi,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2024年第13期232-239,共8页
Laser & Optoelectronics Progress
基金
国家自然科学基金(62075153,62075151,62205237)
山西省重点研发计划(光电领域)(202102150101004)
山西省中央引导地方科技发展基金(YDZJSX20231A019)
山西省自然科学基金青年项目(20210302124396)。
关键词
光纤光学
分布式光纤传感
前向受激布里渊散射
物质识别
神经网络
fiber optics
distributed fiber sensing
forward stimulated Brillouin scattering
substance identification
neural network