摘要
农业是国民经济的一个重要产业,推进农业农村现代化建设是社会主义现代化建设的重大任务。随着智慧农业的发展,深度学习技术在农业图像数据分析中的应用越来越广泛,深度学习技术在农业图像处理方面的应用有效地降低生产成本、提高农业生产效率、加快农业现代化的发展进程。系统介绍了目标检测、图像识别和图像分割3种常见的深度学习技术在农业图像处理中的应用现状,希望能为后续研究者提供帮助。
Agriculture is an important industry in the national economy,and promoting the modernization of agriculture and rural areas is a major task of socialist modernization.With the development of smart agriculture,Deep Learning technology is more and more widely applied in agricultural image data analysis.The application of Deep Learning technology in agricultural image processing has effectively reduced production costs,improved agricultural production efficiency,and accelerated the development process of agricultural modernization.The article systematically introduces the current application status of three common Deep Learning technologies,including object detection,image recognition,and image segmentation,in agricultural image processing.It is hoped to provide assistance for future researchers.
作者
王湾湾
WANG Wanwan(College of Computer and Information Engineering,Henan Normal University,Xinxiang,Henan Province,453007 China)
出处
《科技资讯》
2024年第16期168-170,共3页
Science & Technology Information
关键词
深度学习
农业图像处理
目标检测
图像分类
图像分割
Deep Learning
Agricultural image processing
Object detection
Image segmentation
Image segmentation