摘要
文章综述了当前头盔佩戴检测技术的发展现状与挑战,重点探讨了基于深度学习方法尤其是YOLO系列算法在头盔佩戴识别领域的应用潜力。文章将YOLOv8算法应用于头盔佩戴检测领域,此方法克服了传统监控手段的局限性,实现了高效率、高准确率的自动检测,对于推动“一盔一带”安全守护行动的实施和提升公共安全管理水平具有重要价值。
This paper provides an overview of the current state and challenges in helmet-wearing detection technology,with a particular focus on the application potential of deep learning methodologies,notably the YOLO(You Only Look Once)series of algorithms,in the realm of helmet recognition.By implementing the YOLOv8 algorithm for helmet-wearing detection,this approach not only overcomes the limitations of conventional surveillance methods but also achieves highly efficient and accurate automated detection.It thereby significantly contributes to the implementation of the“One Helmet,One Belt”safety campaign and enhances public safety management capabilities.
作者
吴卫宏
高莹
胡聪聪
张艳敏
WU Weihong;GAO Ying;HU Congcong;ZHANG Yanmin(Hebei Software Institute,Baoding 071000,China;Hebei Province Research and Development Center for Intelligent Interconnected Equipment and Multimodal Big Data Applications,Baoding 071000,China;Langfang No.4 Vocational Middle School,Langfang 065000,China)
出处
《无线互联科技》
2024年第17期31-33,37,共4页
Wireless Internet Science and Technology
基金
2023年保定市科技计划自筹经费项目,项目名称:基于深度学习的非机动车头盔佩戴检测系统的研究与应用,项目编号:2311ZG017。