摘要
针对污水治理中数据处理的复杂性,文章提出采用神经网络算法和遗传算法进行污水数据处理。通过对神经网络算法的深入研究,发现其在污水处理过程中能够实现智能调控和高效预测。遗传算法的应用使得污水处理厂的运行管理得到优化。实验结果表明,采用神经网络算法和遗传算法进行污水数据处理,能够显著提高处理效率,降低治理成本。神经网络算法通过大数据分析和模式识别,实现了对污染物的快速检测、流量的智能调控,而遗传算法通过模拟生物进化,为污水处理过程中的优化问题提供了新的解决思路。
In response to the complexity of data processing in sewage treatment,this article proposes using neural network algorithms and genetic algorithms for sewage data processing.Through in-depth research on neural network algorithms,it has been found that they can achieve intelligent regulation and efficient prediction in wastewater treatment processes.Meanwhile,the application of genetic algorithms has optimized the operation and management of sewage treatment plants.The experimental results show that using neural network algorithms and genetic algorithms for sewage data processing can significantly improve treatment efficiency and reduce treatment costs.Neural network algorithms achieve rapid detection of pollutants and intelligent regulation of flow through big data analysis and pattern recognition,while genetic algorithms provide innovative solutions for optimization problems in wastewater treatment processes by simulating biological evolution.
作者
周福妹
ZHOU Fumei(Guilin Drainage Engineering Management Office,Guilin 541100,China)
关键词
遗传算法
神经网络算法
污水治理
genetic algorithm
neural network algorithm
wastewater treatment