期刊文献+

基于主车和目标车辆动力学的前车转向角估计

Steering Angle Estimation for Preceding Vehicles Considering Host-target Vehicle Dynamics
原文传递
导出
摘要 转向角是表征目标车辆侧向运动的基本要素,可以被用于辨识车辆换道等行为。文中提出了一种利用由相机、激光雷达、毫米波雷达等传感器获取的信息估计目标车辆转向角的新方法,基于车辆动力学和道路约束建立了一个目标车辆侧向运动模型,该模型可以有效表征目标车辆侧向运动。基于该模型,本文采用卡尔曼滤波器完成了对目标车辆转向角的估计,并利用仿真分析验证了模型在直道和弯道情况下的准确性。结果显示,基于该模型可以准确地对目标车辆转向角进行估计,并可以在将来应用于对目标车辆驾驶行为的辨识。 Steering angle is an essential parameter tightly linked to the lateral motion of the target vehicle that could be used to characterize the vehicle behaviors such as lane changing.This paper presents a new method for estimating the target vehicle steering angle using the information obtained from sensors such as the camera,light detection and ranging(LiDAR)and radar.A complete lateral motion model based on vehicle dynamics and road constraints is constructed and can be applied to interpret the target vehicle lateral motion.Kalman filter is adopted to estimate the steering angle of the target vehicle and simulations are carried out both in straight and curve roads.The results show that this model established in this article can be used to realize accurate estimate of the target vehicle steering angle.The proposed model can be applied for better recognition of target vehicle behaviors.
作者 李文博 周志松 王亚飞 LI Wenbo;ZHOU Zhisong;WANG Yafei(Changchun Automobile Industry Institute,FAW Training Center,Changchun 130022,China;School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《机械设计与研究》 CSCD 北大核心 2024年第4期130-134,共5页 Machine Design And Research
关键词 转向角估计 自动驾驶 车辆运动模型 驾驶行为 steering angle estimation autonomous vehicle vehicle motion driving behaviour
  • 相关文献

参考文献4

二级参考文献41

  • 1Johnson N, Hogg D. Learning the distribution of object trajectories for event recognition[J]. Image and Vision Computing, 1996,14(8) :609-615.
  • 2Sumpter N, Bulpitt A patterns for predicting and Vision Computing, J. Learning spatio-temporal object behavior[J]. Image 2000,18(9) : 697-704.
  • 3Hu W, Xie D, Tan T, et al. Learning activity pat- terns using fuzzy self-organizing neural network[J]. IEEE Transactions on Systems, Man, and Cyber- netics, Part B: Cybernetics, 2004, 34 (3) : 1618- 1626.
  • 4Atev S, Masoud O, Papanikolopoulos N. Learning traffic patterns at intersections by spectral clustering of motion trajectories[-C~ ff In IEEE International Conference on Intelligent Robots and Systems, Bei- jing, 2006 : 4851-4856.
  • 5Bashir F I, Khokhar A A, Schonfeld D. Object traj- ectory-based activity "classification and recognition using hidden Markov models~J-]. IEEE Transac- tions on Image Processing, 2007,16(7)..1912-1919.
  • 6Hu W, Xiao X, Fu Z, et al. A system for learning statistical motion patterns[J]. IEEE Transactions ~n Pattern Analysis and Machine Intelligence, 2006, 28(9) : 1450-1464.
  • 7Hu W, Xie D, Fu Z, et al. Semantic-based surveil- lance video retrieval[J]. IEEE Transactions on Im- age Processing, 2007,16(4) .. 1168-1181.
  • 8Biliotti D, Antonini G, Thiran J P. Multi-layer hier- archical clustering of pedestrian trajectories for auto- matic counting of people in video sequences[C]//In Proceedings - IEEE Workshop on Motion and Video Computing, Breckenridge, Colorado,2007 : 50-57.
  • 9Junejo N, Javed O, Shah M. Multi feature path modeling for video surveillance[C]//Proceedings of the 17th International Conference on Pattern Recog- nition, Washington DC, USA, 2004 : 716-719.
  • 10Wang L, Hu W M, Tan T N. Recent developments in human motion analysis[J]. Pattern Recognition, 2003,36 (3) : 585-601.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部