摘要
提出一种改进的回声状态神经网络模型,用于复杂系统的长期行为分析和预测.模型通过引入隐层状态的延迟反馈体现系统过去时刻的信息对当前状态的影响,避免了传统回声状态网络方法记忆能力弱的缺点以及获得最优参数的困难.
We proposed an improved echo state neural network model for the analysis and prediction of long-term behavior of complex systems.The model introduced the delayed feedback of hidden layer state to reflect the influence of the past time information on the current state of the system,avoiding the shortcomings of weak memory ability and difficulty of obtaining optimal parameters in traditional echo state network methods.
作者
徐一宸
Eric Li
XU Yichen;Eric Li(School of Information,Renmin University of China,Beijing 100872,China;School of Computing,Engineering&Digital Technologies,Teesside University,Middlesbrough TS14,North Yorkshire,United Kingdom;College of Mathematics,Jilin University,Changchun 130012,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2024年第5期1017-1021,共5页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:12072128)。
关键词
回声状态网络
混沌时间序列
储备池计算
稳定性
长期预测
echo state network
chaotic time series
reservoir computing
stability
long-term prediction