摘要
考虑一类带时滞的非自治二阶发展方程.首先,利用Faedo-Galerkin逼近法得到其在C_(H_(t))上解的存在性和唯一性;其次,借助算子分解验证过程{U(t,τ)}t≥τ在C_(H_(t))上的D_(C_(H_(t)))-拉回渐近紧性,从而证明带时滞的发展方程时间依赖拉回吸引子的存在性.
We considered a class of non-autonomous second-order evolution equations with delay.Firstly,we obtained the existence and uniqueness of solution by using Faedo-Galerkin approximation method in C_(H_(t)).Secondly,by means of operator decomposition,the D_(C_(H_(t)))-pullback asymptotic compactness of the process{U(t,τ)}t≥τon C_(H_(t)) was verified,which proved the existence of time-dependent pullback attractor for evolution equations with delay.
作者
高娟平
刘亭亭
GAO Juanping;LIU Tingting(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2024年第5期1027-1036,共10页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:12101502,11961059)。
关键词
发展方程
算子分解
时间依赖拉回吸引子
存在性
evolution equation
operator decomposition
time-dependent pullback attractor
existence