摘要
首先,利用微分不等式技术给出双向流动介质在牛顿冷却边界条件下关于温度的L4范数和解的先验估计;其次,利用解的先验估计并设置适当的能量函数,证明半无限管道中解随空间变量代数式衰减.
Firstly,by using differential inequality techniques,we gave a prior estimate of the L 4 norm and solution of temperature for bidirectional flow media under the Newtonian cooling boundary conditions.Secondly,by using a prior estimate of the solution and setting an appropriate energy function,we proved that the solutions decayed algebraically with spatial variable in a semi-infinite pipe.
作者
陈雪姣
李远飞
CHEN Xuejiao;LI Yuanfei(School of Data Science,Guangzhou Huashang College,Guangzhou 511300,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2024年第5期1052-1062,共11页
Journal of Jilin University:Science Edition
基金
广东省普通高校创新团队项目(批准号:2020WCXTD008)
广州华商学院导师制项目(批准号:2023HSDS29)
广州华商学院科研团队项目(批准号:2021HSKT01)。
关键词
双向流动介质
空间性质
能量分析
bidispersive flow
spatial property
energy analysis