期刊文献+

基于协同LSTM-SVR模型的英语课程微信辅助教学成绩预测

Prediction of Student Grades in College English WeChat Teaching Based on Collaborative LSTM-SVR Model
下载PDF
导出
摘要 近年来随着国内外移动互联网络科技水平的不断进步,特别是微信小程序这一新兴产业的出现及推广,为了优化微信小程序的辅助英语教学模式以及为实施教学干预提供数据支持,使用协同LSTM-SVR模型,通过学习过程评价结果预测学生的期末成绩,指导教师针对性地根据过程考核预测的期末成绩调整教学模式和策略.结果表明,预测的微信小程序辅助教学考核成绩有良好的准确率,有助于反映辅助教学效果及时调整教学. In recent years,with the continuous advancement of mobile internet technology both domestically and internationally,especially the emergence and promotion of the emerging industry of WeChat mini programs,in order to optimize the auxiliary English teaching mode of WeChat mini programs and provide data support for implementing teaching interventions,a collaborative LSTM-SVR model is used to predict studentsfinal grades through learning process evaluation results,guide teachers to adjust teaching modes and strategies based on the predicted final grades of the process assessment.The results indicate that the predicted WeChat mini program as-sisted teaching assessment results have good accuracy,which helps to reflect the effectiveness of assisted teaching and adjust teaching in a timely manner.
作者 强兰兰 QIANG Lanlan(Anhui Yangtse Vocational and Technical College,Wuhu 241000,Anhui,China)
出处 《山西师范大学学报(自然科学版)》 2024年第3期34-38,共5页 Journal of Shanxi Normal University(Natural Science Edition)
关键词 微信小程序 辅助英语教学 协同预测 教学效果 WeChat mini program assisted English teaching collaborative prediction teaching effective-ness
  • 相关文献

参考文献11

二级参考文献76

  • 1韩超,宋苏,王成红.基于ARIMA模型的短时交通流实时自适应预测[J].系统仿真学报,2004,16(7):1530-1532. 被引量:96
  • 2王均,关伟.基于Kalman滤波的城市环路交通流短时预测研究[J].交通与计算机,2006,24(5):16-19. 被引量:11
  • 3J Breese, D Hecherman, C Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In: Proc of the 14th Conf on Uncertainty in Artificial Intelligence (UAI98) . San Francisco,CA: Morgan Kaufmann, 1998. 43~52
  • 4B Sarwar, G Karypis, J Konstan, et al. Item-based collaborative filtering recommendation algorithms. In: Proc of the 10th Int'l World Wide Web Conf. New York: ACM Press, 2001. 285~295
  • 5A Dempster, N Laird, D Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, 39(1): 1~38
  • 6B Thiesson, C Meek, D Chickering, et al. Learning mixture of DAG models. Microsoft Research, Tech Rep: MSR-TR-97-30,1997
  • 7B Sarwar, G Karypis, J Konstan, et al. Analysis of recommendation algorithms for E-commerce. In: Proc of the 2nd ACM Conf on Electronic Commerce. New York: ACM Press,2000. 158~167
  • 8J Wolf, C Aggarwal, K-L Wu, et al. Horting hatches an egg: A new graph-theoretic approach to collaborative filtering. In: Proc of the 5th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. New York: ACM Press, 1999. 201~212
  • 9C C Aggarwal. On the effects of dimensionality reduction on high dimensional similarity search. In: Proc of the 20th ACM SIGMOD-SIGACT-SIGART Symp on Principles of Database Systems. New York: ACM Press, 2001. 256~266
  • 10B Kitts, D Freed. Cross-sell: A fast promotion-tunable customeritem recommendation method based on conditionally independent probabilities. In: Proc of ACM SIGKDD2000. New York: ACM Press, 2000. 437~446

共引文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部