期刊文献+

人工智能在前列腺癌病理诊断及分子分型中的研究进展

Artificial intelligence in pathological diagnosis and molecular typing of prostate cancer:research progress
下载PDF
导出
摘要 人工智能(AI)在前列腺癌(PCa)病理诊断、影像学诊断、预后预测、分子分型等方面具有重要意义和远大前景。本文主要关注AI分析病理切片在PCa病理诊断及分子分型中的应用进展,简要介绍了AI在穿刺病理诊断和Gleason分级、切除术后病理的诊断和分级、基于病理切片预测PCa患者预后中的应用。在穿刺病理诊断和Gleason分级方面,AI已经和普通病理医师表现不相上下;在切除术后病理的诊断和分级方面,AI可以对肿瘤进行精准分级与评分;在PCa患者预后预测方面,AI可以直接从病理组织切片中提取相关预后信息,预测PCa患者的术后情况。此外,AI还可以预测PCa患者的基因突变,通过分析病理切片得出基因突变的概率。 Artificial intelligence(AI)has important significance and great promise in the pathological diagnosis,imaging diagnosis,prognosis prediction,and molecular subtyping of prostate cancer(PCa).This review focuses on the progress of AI for the diagnosis and molecular classification of PCa,and briefly introduces the application of AI in the pathological diagnosis of needle biopsy and Gleason grading,pathological diagnosis and grading after prostatectomy,and prognosis prediction of PCa patients based on pathological sections.For the pathological diagnosis of needle biopsy and Gleason grading,AI has already comparable to general pathologists;for the pathological diagnosis and grading after prostatectomy,AI can accurately grade and classify tumors;and for the prognosis prediction of PCa patients,AI can directly extract relevant prognostic information from pathological tissue sections for prognosis prediction.In addition,AI can also predict gene mutations in PCa patients and suggest the probability of gene mutation by analyzing the pathological sections.
作者 范麟龙 宋子健 邓龙昕 许雨锶 陈锐 FAN Linlong;SONG Zijian;DENG Longxin;XU Yusi;CHEN Rui(Department of Urology,The First Affiliated Hospital of Naval Medical University(Second Military Medical University),Shanghai 200433,China;Department of Urology,Renji Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200127,China;Department of Urology,The Second Affiliated Hospital of Naval Medical University(Second Military Medical University),Shanghai 200003,China)
出处 《海军军医大学学报》 CAS CSCD 北大核心 2024年第9期1141-1146,共6页 Academic Journal of Naval Medical University
基金 国家自然科学基金面上项目(82272905) 上海市青年科技启明星计划(21QA1411500) 上海市自然科学基金面上项目(22ZR1478000)。
关键词 前列腺肿瘤 人工智能 病理诊断 GLEASON评分 分子分型 prostatic neoplasms artificial intelligence pathologic diagnosis Gleason score molecular subtyping
  • 相关文献

参考文献7

二级参考文献24

  • 1李鸣,那彦群.不同水平前列腺特异抗原的前列腺癌诊断率[J].中华医学杂志,2008,88(1):16-18. 被引量:56
  • 2Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012 [ J]. CA Cancer J Clin,2015,65 : 87-108.
  • 3Futterer JJ, Verma S, Hambrock T, et al. High-risk prostatecancer: value of muhi-modality 3T MRI-guided biopsies after previous negative biopsies [ J]. Abdom Imaging, 2012,37 : 892- 896.
  • 4Loch T, Leuschner I, Gcnberg C, et al. Artificial neural network analysis ( ANNA ) of prostatic transreetal ultrasound [ J ]. Prostate, 1999,39 : 198-204.
  • 5Walsh PC. 2008 Whitmore Lecture: Radical prostatectomy--where we were and where we are going [ J ]- Urol Oncol,2009,27 : 246- 250.
  • 6Jiang X, Zhu S, Feng G, et al. Is an initial saturation prostate biopsy scheme better than an extended scheme for detection of prostate cancer? A systematic review and meta-analysis [ J ] Eur Urol,2013,63 : 1031-1039.
  • 7Halpern EJ, Verkh L, Forsberg F, et al. Initial experience with contrast-enhanced sonography of the prostate [ J ] AJR Am J Roentgeno1,2000,174 : 1575 -1580.
  • 8Brock M, Eggert T, Palisaar 1LI, et al. Multiparametric ultrasound of the prostate: adding contrast enhanced ultrasound to real-time elastography to detect histopathologically confirmed cancer [ J]. JUrol, 2013' 189 : 93-98.
  • 9Govorov A, Pushkar D, Kovylina M, et al. 350 Validation of histoscanning system to detect and characterize prostate cancer [J]. Eur Urol Suppl,2013,12: e350.
  • 10Hsu C, Spahn M,Briganti A,et al. 911 Oncological outcome and prognostic factors for locally advanced prostate cancer treated with radical prostateetomy: an EMPaCT study [ J]. Euro Urol Suppl, 2013,12: e911.

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部