期刊文献+

基于渐开线轮廓凸轮的杠杆式偏角解耦变刚度关节设计

Design of a Lever-type Deflection Angle Decoupling Variable-stiffness Joint Based on Involute Contoured Cam
原文传递
导出
摘要 针对当前的杠杆式变刚度关节存在的刚度与偏角耦合的缺点,提出一种变刚度关节设计方案。首先,提出了可调支点杠杆机构的结构方案。通过静力学模型分析得出关节刚度与偏角无关。进而,设计了调整杠杆机构支点位置的渐开线凸轮机构,使得凸轮转角与支点位置成线性关系,降低了关节刚度调节的难度。最后,设计并制作了变刚度关节的原理样机,分别进行了样机关节刚度特性以及刚度与偏角关系的仿真与实验,验证了变刚度原理的可行性以及刚度与偏角的解耦性。 Current lever-type variable-stiffness joints suffer from the coupling between stiffness and deflection angle.To overcome this limitation,a variable-stiffness joint design scheme is proposed.Firstly,a structure scheme of the adjustablepivot lever mechanism is proposed.Herein,the joint stiffness is proved to be independent of deflection angle by analyzing the statics model.Furthermore,an involute cam mechanism is designed to adjust the pivot position of the lever mechanism,achieving a linear relationship between the cam angle and the pivot position.This design reduces the difficulty in adjusting the joint stiffness.Finally,a prototype of variable-stiffness joint is designed and manufactured,and the stiffness characteristics of the prototype joint and the relationship between stiffness and deflection angle are simulated and tested respectively.The feasibility of the variable-stiffness principle and the decoupling between stiffness and deflection angle are verified.
作者 唐贵阳 杨晓钧 李兵 汪大愚 TANG Guiyang;YANG Xiaojun;LI Bing;WANG Dayu(School of Mechanical Engineering and Automation,Harbin Institute of Technology Shenzhen,Shenzhen 518000,China)
出处 《机器人》 EI CSCD 北大核心 2024年第5期524-533,共10页 Robot
基金 国家自然科学基金联合基金(U22A20176)。
关键词 变刚度关节 渐开线轮廓凸轮 杠杆原理 偏角解耦 variable-stiffness joint involute contoured cam lever principle deflection angle decoupling
  • 相关文献

参考文献4

二级参考文献25

  • 1Blickhan R. The spring-mass model for running and hopping[J]. Journal of Biomechanics, 1989, 22(11/12): 1217-1227.
  • 2Blickhan R, Seyfarth A, Geyer H, et al. Intelligence by me- chanics[J]. Philosophical Transactions of the Royal Society, A: Mathematical, Physical and Engineering Sciences, 2007, 365(1850): 199-220.
  • 3Hutter M, Remy C D, Hoepflinger M A, et al. High compliant series elastic actuation for the robotic leg scarleth[C]//14th In- ternational Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines. Singapore: World Scientific Publishing, 2012: 507-514.
  • 4Seyfarth A, Iida F, Tausch R, et al. Towards bipedal jogging as a natural result of optimizing walking speed for passively com- pliant three-segmented legs[J]. International Journal of Robotics Research, 2009, 28(2): 257-265.
  • 5Hobara H, lnoue K, Muraoka T, et al. Leg stiffness adjustment for a range of hopping frequencies in humans[J]. Journal of Biomechanics, 2010, 43(3): 506-511.
  • 6Ferris D E Louie M, Farley C T. Running in the real world: Ad- justing leg stiffness for different surfaces[J]. Proceedings of the Royal Society, B: Biological Sciences, 1998, 265(1400): 989- 994.
  • 7Arampatzis A, Bruggemann G P, Metzler V. The effect of speed on leg stiffness and joint kinetics in human running[J]. Journal of Biomechanics, 1999, 32(12): 1349-1353.
  • 8Riese S, Seyfarth A. Stance leg control: Variation of leg param- eters supports stable hopping[J]. Bioinspiration & Biomimetics, 2012, 7(1): 016006.
  • 9Galloway K C, Clark J E, Koditschek D E. Variable stiffness legs for robust, efficient, and stable dynamic running[J]. Journal of Mechanisms and Robotics, 2013, 5( 1 ): 011009.
  • 10Hurst J W, Rizzi A A. Series compliance for an efficient running gait[J]. IEEE Robotics & Automation Magazine, 2008, 15(3): 42-51.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部