期刊文献+

不同预算约束下影响者选择策略与产品推广效果研究

Research on Influencer Selection Strategy and Product Promotion Effect Under Different Budget Constraints
下载PDF
导出
摘要 为深刻剖析企业在不同营销预算情境下,选择不同类型影响者对产品推广效果的具体影响,基于消费者的购买行为、影响者分类及产品信息在社交网络中的传播机制,构建了一个全面的影响者营销模型,并利用多层网络仿真分析企业在多平台上开展影响者营销活动时的影响者选择问题。结果表明:当企业营销预算较低时,雇佣纳米级影响者进行营销是一种更明智的选择;当企业预算较高时,雇佣名人影响者进行产品推广会更加有效;企业可以考虑按照上述营销策略在多个社交网络平台上开展影响者营销活动,全面覆盖潜在消费者以获得更好的推广效果。 To profoundly analyze the specific impacts of selecting different types of influencers on product promotion effectiveness under varying marketing budget scenarios,a comprehensive influencer marketing model was constructed grounded in consumer purchasing behavior,influencer classification,and the dissemination mechanisms of product information within social networks.Furthermore,multi-layer network simulation was used to analyze the influencer selection problem when enterprises carry out influencer marketing activities on multiple platforms.The results indicated that:When the marketing budget of a company is low,hiring nano influencers for marketing is a wiser choice;In a high budget,hiring celebrity influencers is more effective;Firms can consider conducting influencer marketing activities on multilayer social network platforms according to the above marketing strategies,comprehensively covering potential consumers to achieve better promotional effects.
作者 黄杏 郑锐 逯一辰 HUANG Xing;ZHENG Rui;LU Yichen(School of Safety Science and Emergency Management,Wuhan University of Technology,Wuhan 430070,China;不详)
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2024年第4期582-589,共8页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 国家自然科学基金项目(72101193) 教育部人文社会科学基金项目(21YJC630173).
关键词 影响者营销 影响者选择 社交网络 多层网络 仿真分析 influencer marketing influencer selection social network multilayer network simulation analysis
  • 相关文献

参考文献1

二级参考文献29

  • 1Misner I R. The Word's Best Known Marketing Secret, Building Your Business with Word-of-Mouth Marketing. San Jose. California. USA, Bard Press. 1999.
  • 2Domingos P. Richardson M. Mining the network value of customers/ /Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco. USA. 2001, 57-66.
  • 3Richardson M. Domingos P. Mining knowledge-sharing sites for viral marketing/ /Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton. Canada. 2002, 61-70.
  • 4Kempe D. Kleinberg J. Tardos E. Maximizing the spread of influence through a social network/ /Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington. USA. 2003: 137-146.
  • 5Kempe D. Kleinberg J. Tardos E. Influential nodes in a diffusion model for social networks/ /Caires L. Italiano G F. Monteiro L. et al, eds. Automata. Languages and Programming. Libson , Portugal. 2005, 1127-1138.
  • 6Chen W. Wang C. Wang Y. Scalable influence maximization for prevalent viral marketing in large- scale social networks/ / Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington. USA. 2010, 1029-1038.
  • 7Leskovec J. Krause A. Guestrin C. et al. Cost-effective outbreak detection in networks/ /Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose. USA. 2007, 420-429.
  • 8Chen W. Wang Y. Yang S. Efficient influence maximization in social networks/ /Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris. France. 2009, 199-208.
  • 9Goyal A. Lu W. Lakshmanan L V. CELF++, Optimizing the greedy algorithm for influence maximization in social networks/ /Proceedings of the 20th International Conference Companion on World Wide Web. Hyderabad. India. 2011, 47-48.
  • 10Kimura M. Saito K. Approximate solutions for the influence maximization problem in a social network/ /Gabrys B. Howlett R J. Jain L C eds. Knowledge-Based Intelligent Information and Engineering Systems. Bournemouth , UK. 2006, 937-944.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部