期刊文献+

基于时空矩阵分解的空气质量推断

Spatio-temporal Matrix Factorization Based Air Quality Inference
下载PDF
导出
摘要 随着城市化进程加快,空气污染形势也愈发严峻,在城市范围内提供细粒度的空气质量时空分布对于人们的户外活动规划和身体健康具有重要意义。然而,稀疏的空气质量站点、不完备的相关特征数据及空气质量随空间和时间的非线性变化使无站点区域的空气质量准确推断面临巨大挑战。通过分析实际空气质量数据集,发现空气质量矩阵的低秩结构,并基于此提出一种基于低秩矩阵分解的方法,通过融合来自低秩结构、空气质量测量值和各类时空特征的信息进行空气质量推断。与现有工作分别处理特征恢复、特征提取和空气质量推断不同,本文方法将3个任务统一到一个模型,通过对不同任务的协同训练与监督提升总体的推断性能。在模型中,构建空间、时间特征矩阵及空气质量矩阵,进行联合低秩矩阵分解,分别得到空间区域的特征表示、不同时刻的特征表示,通过与空气质量矩阵共享空间及时间矩阵因子,将空间和时间特征表达的时空相似性信息迁移到空气质量矩阵缺失值推断以提升其性能。基于北京市的真实空气质量数据集,将所提模型与基线模型进行对比,结果表明所提模型在推断误差、标准差等指标上均优于基线模型,具有较好的FAC2结果,能够在一定程度上揭示影响空气质量变化的主要时空特征。 With rapid urbanization,air pollution has become increasingly severe,making the provision of a spatio-temporal fine-grained air quality distribution essential to support outdoor planning and promote good health.However,the sparseness of air quality stations,the incompleteness of related feature data,and the nonlinear variation of air quality across locations and times pose substantial challenges for accurately inferring air quality in unobserved areas.This study proposes a matrix factorization-based approach to infer air quality by analyzing a real air quality dataset and discovering the low-rank structure of the air quality matrix.This approach fuses knowledge from the low-rank structure,air quality measurements,and various spatio-temporal features.Unlike existing works that address feature recovery,feature extraction,and air quality inference separately,this study unifies these three tasks into a single model.Such integration allows for improved inference performance through the collaborative training and supervision of different tasks.In this model,spatial and temporal feature matrices and the air quality matrix are constructed and collaboratively factorized into spatial and temporal feature representations.By sharing spatio-temporal matrix factors with the air quality matrix,the similarity knowledge of spatial and temporal features is transferred into air quality inference to enhance its performance.The proposed model is evaluated using real data sources obtained in Beijing city.Comparison results with baseline models demonstrate that the proposed model surpasses these models in various metrics,such as inference error and standard deviation,and achieves a better FAC2 result.Additionally,the model effectively reveals the principal spatial and temporal features to a certain extent.
作者 胡克勇 郭小兰 刘国晓 杨鑫 王续澎 HU Keyong;GUO Xiaolan;LIU Guoxiao;YANG Xin;WANG Xupeng(School of Info.and Control Eng.,Qingdao Univ.of Technol.,Qingdao 266520,China)
出处 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第5期146-155,共10页 Advanced Engineering Sciences
基金 国家自然科学基金项目(61902205,42201506)。
关键词 时空特征 矩阵分解 空气质量推断 低秩结构 spatial-temporal feature matrix factorization air quality inference low-rank structure
  • 相关文献

参考文献4

二级参考文献39

  • 1常文渊,戴新刚,陈洪武.地质统计学在气象要素场插值的实例研究[J].地球物理学报,2004,47(6):982-990. 被引量:44
  • 2刘庆,王静,史衍玺,张建国,张衍毓.基于GIS的农田土壤重金属空间分布研究[J].安全与环境学报,2007,7(2):109-113. 被引量:39
  • 3DENBY B, SUNDVOR I, CASSIANI M, et al. Spatial mapping of ozone and S02 trends in Europe [ J ]. Science of the Total Environ-ment, 2010, 408(20) : 4795 -4806.
  • 4BEELEN R, HOEK G, PEBESMA E, et al. Mapping of back- ground air pollution at a fine spatial scale across the European U- nion[J]. Science of the Total Environment, 2009 , 407(6) : 1852 -1867.
  • 5SALCEDO D, CASTRO T, RUIZ-SUAREZ LG, et al. Study of the regional air quality south of Mexico City ( Morelos State ) [ J ]. Science of the Total Environment . 2012, 414: 417 -432.
  • 6HYSTAD P} SETTON E, CERVANTES A, et al. Creating national air pollution models for population exposure assessment in Canada [J]. Environmental Health Perspectives 2011, 119(8): 1123- 1129.
  • 7KEBLOUTI M, OUERDACHI L, BOUTAGHANE H. Spatial inter-polation of annual precipitation in Annaba-Algeria-comparison and evaluation of methods[ J]. Energy Procedia, 2012, 18; 468 -475.
  • 8ZU Xiaofang, HOU Weisheng, ZHANG Baoyi, et al. Overview of three-dimensional geological modeling technology [ J ]. IERI Proce-dia, 2012, 2: 921 -927.
  • 9SUN Y, KANG S Z, LI F S, et al. Comparison of interpolation methods for depth to groundwater and its temporal and spatial varia-tions in the Minqin oasis of Northwest China [ J ]. Environmental Modelling & Software, 2009, 24(10); 1163 - 1170.
  • 10KAZEMI S M, HOSSEINI S M. Comparison of spatial interpola-tion methods for estimating heavy metals in sediments of Caspian Sea[ J ]. Expert Systems with Applications, 2011, 38(3): 1632 - 1649.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部