摘要
研究一般有界区域上高维变权p-Laplacian方程-div(φ_(p)▽(u))=γm(x)f(u),u(x)=0,x∈∂Ω保号解的存在性.其中Ω是R^(N)上的一个有界且在其边界上光滑的区域,m(x)∈C(Ω),γ是一个参数,f∈C(ℝ,ℝ),对于s≠0满足sf(s)>0.当满足f_(0)■(0,∞)或f_(∞)(0,∞)(其中f_(0)=lim|s|→0 f(s)/φ_(p)(s),f_(∞)=lim|s|→∞f(s)/φ_(p)(s)),且γ≠0属于一定区间时,本文研究上述高维p-Laplacian方程保号解的存在性.我们用全局分歧技巧和连通序列集取极限的方法获得主要结果.
In this paper,we shall study the existence of one-sign solutions for thep-Laplacian problem:-div(φ_(p)▽(u))=γm(x)f(u),u(x)=0,x∈∂Ω,whereΩis a bounded domain in ℝ^(N) with a smooth boundary∂Ω,and m(x)∈C(Ω)is a sign changing function,γis a parameter,f∈C(ℝ,ℝ),sf(s)>0 for s≠0.Based on the bifurcation result of Dai et al.[9,Theorem 5.1],we give the intervals for the parameterγ≠0 which ensure the existence of one-sign solutions for the above high-dimensional p-Laplacian problems if f_(0)■(0,∞)or f_(∞)(0,∞),where f_(0)=lim|s|→0 f(s)/φ_(p)(s),f_(∞)=lim|s|→∞f(s)/φ_(p)(s).We use unilateral global bifurcation techniques and the approximation of connected components to prove our main results.
作者
沈文国
Shen Wenguo(College of General Education,Guangdong University of Science and Technology,Dongguan 523083,China)
出处
《南京师大学报(自然科学版)》
CAS
北大核心
2024年第3期15-20,共6页
Journal of Nanjing Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11561038).
关键词
单侧全局分歧
一般区域上高维变权p-Laplacian方程
保号解
unilateral global bifurcation
high-dimensional sign-changing weight p-Laplacian problems on general domain
one-sign solutions