摘要
为了实现低成本的工业设备故障检测,设计了一套基于环境声识别的设备状态监测实验系统。基于Arduino开源硬件开发低成本的智能传感器,并部署限制感受野的深度学习模型RFL-MobileNet。通过在边缘端进行智能数据处理,系统为工厂设备提供了实时且准确的状态监测,以减少传统方法中数据传输到云端所带来的延迟以及数据泄露风险。基于公开数据集和实际数据集的实验结果表明,系统运行良好,电动机故障检测准确率达95.4%。
A test system for industrial equipment status monitoring based on environmental sound recognition is designed to achieve low-cost equipment fault detection.The RFL-MobileNet model is developed,and deployed in Arduino open-source hardware to implement low-cost intelligent sensors.By performing intelligent data processing at the edge,the system provides real-time and accurate status monitoring for factory equipment,reduces the latency and data leakage risks brought by data transmission to the cloud in traditional methods.Experimental results based on public datasets and actual datasets demonstrate that the system’s functionality can work well,with the detection accuracy of the operating status of direct-current motors reaching 95.4%.
作者
张雷
林子煜
李飞达
郭婧
闵丽娟
ZHANG Lei;LIN Ziyu;LI Feida;GUO Jing;MIN Lijuan(School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处
《实验室研究与探索》
CAS
北大核心
2024年第8期47-51,共5页
Research and Exploration In Laboratory
基金
国家自然科学基金项目(52105553)
南京邮电大学教学改革研究项目(JG01623JX106)。
关键词
嵌入式机器学习
设备状态监测
音频分类
实验系统
embedded machine learning
equipment status monitoring
audio classification
experimental system