摘要
运用不动点方法研究具有Riemann-Stieltjes积分边界条件的Riemann-Liouville型分数阶微分方程的边值问题.将该方程转化成等价的积分方程,在合适的工作空间构造对应的算子方程,再借助Krasnosel’skii-Zabreiko不动点定理求解其不动点,进而获得原方程正解的存在性.
Based on the fixed point theory,this paper aims to study the boundary value problem for a Riemann-Liouville-type fractional differential equation with Riemann-Stieltjes integral boundary value conditions.Firstly,its equivalent integral equation is transformed,and the corresponding operator equation is constructed in the function space.Then,fixed points of the operator equation are obtained by using the Krasnosel’skii-Zabreiko fixed point theorem,and so the existence of positive solutions is shown for the considered problem.
作者
马亚茹
柏仕坤
MA Yaru;BAI Shikun(School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China)
出处
《湖州师范学院学报》
2024年第8期1-8,共8页
Journal of Huzhou University
基金
国家自然科学基金项目(11971081)
重庆市自然科学基金项目(cstc2020jcyj-msxmX0123)。